
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2020

Mobile Data Analysis using Dynamic Binary Instrumentation and Mobile Data Analysis using Dynamic Binary Instrumentation and

Static Analysis Static Analysis

Christopher Dukarm

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dukarm, Christopher, "Mobile Data Analysis using Dynamic Binary Instrumentation and Static Analysis"
(2020). Theses and Dissertations. 3157.
https://scholar.afit.edu/etd/3157

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3157?utm_source=scholar.afit.edu%2Fetd%2F3157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

Mobile Data Analysis using Dynamic Binary
Instrumentation and Static Analysis

THESIS

Christopher Dukarm, 2d Lt, USAF

AFIT-ENG-MS-20-M-016

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENG-MS-20-M-016

Mobile Application Data Analysis using Dynamic Binary Instrumentation and

Static Analysis

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Christopher Dukarm, B.S.C.S.

2d Lt, USAF

March 26, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-MS-20-M-016

Mobile Application Data Analysis using Dynamic Binary Instrumentation and

Static Analysis

THESIS

Christopher Dukarm, B.S.C.S.
2d Lt, USAF

Committee Membership:

Maj Richard Dill, Ph.D
Chair

Lt Col Patrick J. Sweeney, Ph.D
Member

Dr. Timothy H. Lacey, Ph.D
Member

www.manaraa.com

AFIT-ENG-MS-20-M-016

Abstract

Mobile classified data leakage poses a threat to the Department of Defense pro-

grams and missions. Security experts must know the format of application data, in

order to properly classify mobile applications. This research presents the Dynamic

Binary Instrumentation Mobile Android Format Investigation and Analysis (DBI-

MAFIA) methodology to identify stored data formats. DBIMAFIA uses Dynamic

Binary Instrumentation and static analysis to uncover the structure of mobile ap-

plication data and validate the results with traditional reverse engineering methods.

DBIMAFIA is applied to fifteen popular Android applications and revealed the format

of stored data. Notably, user personally identifiable information leakage is identified

in the Hago Games application. The application’s messaging service exposes the full

name, birthday, and city of any user of the Hago Games application. These findings

on how Hago Games uses ObjectBox library to store data in custom file formats can

be applied more broadly to any mobile, IoT, or SCADA device or application us-

ing the ObjectBox library. Furthermore, the DBIMAFIA methodology can be more

broadly defined to identify stored data within any Android application.

iv

www.manaraa.com

Acknowledgements

I thank God for giving me the wisdom and strength required to persevere through

this process. Writing this thesis has been a humbling experience and has required

me to rely on others for support and knowledge. I’d like to thank my advisor, Maj

Richard Dill, for his patience with my endless questions and pleas for help. I’d like

to thank Brandon Kamaka, Aaron Pendleton, Marvin Newlin and all of the others in

the CCR who gave me sage advice and kept me sane while writing. Lastly, I’d like

to thank my committee members, Dr. Timothy Lacey, and Lt Col Patrick Sweeney,

for challenging my research and writing.

Christopher Dukarm

v

www.manaraa.com

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

I. Introduction . 1

1.1 Motivation . 2
1.2 Research Objectives . 4
1.3 Methodology. 4
1.4 Summary . 6

II. Background and Literature Review . 7

2.1 Android . 7
2.1.1 Android Architecture . 8
2.1.2 Android Application Fundamentals . 9
2.1.3 Android Databases . 12
2.1.4 Enterprise Beans . 15

2.2 Reverse Engineering Android Applications . 18
2.2.1 Static Reverse Engineering Android Applications 19
2.2.2 Dynamic Reverse Engineering Android

Applications . 21
2.2.3 Anti-Reverse Engineering Techniques . 24
2.2.4 Deciphering file formats . 25

2.3 Forensics . 26
2.3.1 Traditional Forensics . 26
2.3.2 Digital Forensics . 27
2.3.3 Mobile Forensics . 28
2.3.4 IoT Forensics . 29

2.4 Related Work . 29
2.4.1 Disassemblers and Decompilers . 30
2.4.2 Static Instrumentation Tools . 30
2.4.3 Dynamic Binary Instrumentation Tools . 32
2.4.4 Application Analysis . 33
2.4.5 Data Collection Tools . 33
2.4.6 Android File Format Analysis . 35
2.4.7 Related Work Summary . 35

2.5 Summary . 36

vi

www.manaraa.com

Page

III. Methodology . 37

3.1 Device Setup . 38
3.2 Initial Analysis . 38

3.2.1 Initial Analysis Step One: Logical Copy of
Application files and Android application
package (APK) . 39

3.2.2 Initial Analysis Step Two: Application
Interaction . 39

3.2.3 Initial Analysis Step Three: File Analysis . 40
3.2.4 Initial Analysis Step Four: Unpack and

Decompile APK . 40
3.2.5 Initial Analysis Step Five: Identify Imported

Libraries and Application Architecture . 41
3.2.6 Initial Analysis Step Six: Modify Frida for 32-bit

Applications . 41
3.3 Native Method Hooking . 42

3.3.1 Native Method Hooking Step One: Hook Open
Methods and Obtain File Descriptor . 43

3.3.2 Native Method Hooking Step Two: Hook Write,
Dump Stack and Written Data . 44

3.3.3 Native Method Hooking Step Three: Analyze
Written Data . 50

3.4 Class Analysis . 51
3.5 Synthesis . 53
3.6 Validation . 53
3.7 Summary . 54

IV. Results and Analysis . 55

4.1 Introduction . 55
4.2 Common format case study . 55

4.2.1 Device Setup: SmartThings . 55
4.2.2 Initial Analysis: SmartThings . 55
4.2.3 Synthesis: SmartThings . 58
4.2.4 Summary of Known Format Case Study . 58

4.3 Unknown format use cases . 60
4.3.1 Device Setup: Hago Games . 60
4.3.2 Initial Analysis: Hago Games . 60
4.3.3 Native Method Hooking: Hago Games . 64
4.3.4 Class Analysis: Hago Games . 67
4.3.5 Synthesis: Hago Games . 74
4.3.6 Validation . 75

4.4 Summary . 77

vii

www.manaraa.com

Page

V. Conclusions . 78

5.1 Impact . 79
5.2 Future Work . 79

Appendix A. Appendix . 81

1.1 Modification Detective Source Code . 81
Bibliography . 83
Acronyms . 94

viii

www.manaraa.com

List of Figures

Figure Page

1. The Android software stack [1]. 8

2. Android Application Components [2]. 10

3. Without object relational mapper [3]. 13

4. With object relational mapper [3]. 13

5. Relational vs NoSQL [4]. 14

6. How Frida Interacts with Application [5]. 23

7. Dissassemblers/Decompilers Comparison [6]. 31

8. Static Instrumentation Tools Comparison [6]. 32

9. Dynamic Binary Instrumentation Tools Comparison [6]. 33

10. Andriller’s Decoders [7]. 35

11. DBIMAFIA Methodology Overview. 37

12. Offsets added to thread and context pointers. 42

13. Remove 64 bit frame info import. 42

14. Obtaining File Descriptor. 43

15. Javascript hook of libc.so open(). 44

16. Dumping Stack. 45

17. Javascript hook of libc.so write(). 46

18. Dump methods on the stack. 47

19. Debugging Stack Visitor. 48

20. Frida command to inject hooks. 48

21. Method Calls from Memory Stack . 50

22. Method Hook. 52

ix

www.manaraa.com

Figure Page

23. Entropy graph of data.mdb. 61

24. Strings in \files\db 12885822986\data.mdb. 62

25. Hex representation of data.mdb. 63

26. Methods on the stack 1. 65

27. Debugging Stack Visitor2. 66

28. Unicode form of written bytes. 67

29. com.yy.appbase.data.e.a() method. 69

30. com.yy.appbase.data.UserInfoBean

objectBox.model class. 70

31. com.yy.appbase.data.e.b() method. 71

32. io.objectbox.d.a() method. 73

33. Call trace of byte array manipulations. 73

34. Hago Games Data Serialization Process . 74

x

www.manaraa.com

List of Tables

Table Page

1. Types of Session Beans. 17

2. SmartThings CloudDB.db Tables. 57

3. Abbreviated CloudDb.db activity log. 58

4. Storage Formats of Analyzed Applications. 59

6. Methods of io.objectbox.b BoxStore class. 68

5. Attributes of io.objectbox.b BoxStore class. 68

7. Attributes of io.objectbox.d. 72

8. Methods of io.objectbox.d. 72

9. Format of Byte Array. 76

xi

www.manaraa.com

Mobile Application Data Analysis using Dynamic Binary Instrumentation and

Static Analysis

I. Introduction

In May of 2019, President Trump signed Executive Order 13873 [8] stating that

foreign adversaries were creating and exploiting vulnerabilities in communications

equipment to commit economic and industrial espionage against Americans. This

recognized that communications equipment store “vast amounts of sensitive infor-

mation, facilitate the digital economy, and support critical infrastructure and vital

emergency services” [8]. In August 2019, the Android operating system supported

76.23 percent of mobile devices worldwide [9]. The federal government has recog-

nized Android’s popularity and has developed hundreds of Android applications to

allow Americans access to federal agency online resources and programs [10]. Cleared

personnel use a modified Android operating system on tablets that host classified

messages and live stream intelligence data from the Pentagon [11][12]. In response,

cyber security experts must understand how these devices store and process user data

to develop appropriate security procedures.

More private information is stored in mobile and Internet of Things (IoT) devices;

ubiquitousness of the internet has left user data vulnerable, and even private compa-

nies heavily rely on connected devices to access private corporate data. Manufacturers

sacrifice security for convenience. The recent surge of IoT devices has exacerbated

the problem; more sensors and connected devices means a greater volume of data. In

order to understand the increased level of risk, cyber professionals must know what

and how data is stored, processes, and transmitted, to defend the valuable informa-

1

www.manaraa.com

tion. Next, this chapter details the motivation, research objectives, and methodology

of this thesis.

1.1 Motivation

This research provides a methodology that could potentially aid in the identifica-

tion of classified data leakage and insecure data storage methods of applications used

by US government employees and those applications developed by various federal

agencies.

In 2014, Yahoo fell victim to a series of cyber attacks, exposing names, birth dates,

phone numbers, and physical addresses of over 500 million users [13]. That same year,

over 100 million Marriott customers had there contact, passport, and credit card infor-

mation stolen from Marriott’s servers [13]. From 2014 to 2018 Ebay, Equifax, Target,

Uber, and Chase bank all had similar breaches leaking 100s of millions of valuable

personal and business data to attackers [13]. These attacks, although not exclusively

IoT or mobile targets, spurred governments to strengthen existing data privacy laws

and pressure companies to better protect customer data [14]. Unfortunately many

data privacy laws have resulted in requiring users to agree to accept more responsibil-

ity of the security of the data being collected. In the case of IoT devices, consumers

are the ones responsible for keeping their devices updated and secure [15]. Many IoT

manufacturers stop offering security updates a couple years after product release or

sooner, leaving users unknowingly at risk to cyber attacks.

IoT security concerns are not unique to individual households. The United States

Air Force is one of many organizations supporting the adoption of IoT devices across

their systems. In 2018, the United States Air Force (USAF) launched a smart base

test pilot program with AT&T to enhance Maxwell Air Force Base operations with

IoT devices [16]. As the Air Force begins to include IoT devices in operational

2

www.manaraa.com

networks, it is important to know how the devices affect the overall organizational

security posture.

In 2017, attackers gained access to a casino’s customer data via a vulnerable

fish tank smart thermometer [17]. Through wifi connectivity, the vulnerable smart

thermometer provided attackers a path into the casino’s private network, exposing

private customer information.

Mobile devices share many characteristics of IoT devices, but the way users in-

teract with their smartphones sets them apart. Additionally, smartphones typically

have less variety when it comes to operating systems and configurations. In the field

of mobile security, examiners are mostly concerned with data leakage. The amount

of valuable information that is found on a smartphone is astounding and many users

are unknowingly giving away their data when installing certain mobile applications.

This section discusses several mobile devices and applications that posed a serious

threat to their users.

Huawei, the number one telecom supplier and second largest phone manufacturer

in the world [18], produces a variety of mobile devices, equipment, and services. In

May of 2019 Trump banned the use of Huawei products within the United States

government, on the premise that they form a threat to national security [18].

In December of 2019, the Defense Information Systems Agency (DISA) recom-

mended that DoD employees should not use the Chinese-owned application TikTok

[19]. The United States Army, shortly thereafter, banned troops from downloading

the application on any government phone. Many suspect that the application exports

user data to Chinese constituents.

Facebook, the largely popular social media platform, has also been plagued with

data privacy scandals. The amount of data they collect on their users and how they

share that with other applications has prompted United States (US) Congress to

3

www.manaraa.com

question their CEO’s data privacy practices. Outside organizations have abused the

Facebook Application Program Interface (API) to gain unauthorized access to private

Facebook user data [20]. For example, Cambridge Analytica, collected over 87 million

people’s personally identifiable information, via a seemingly benign quiz application,

Thisisyourdigitiallife [20].

User data leakage threatens the security of the United States and its citizens. From

the Department of Defense (DoD)’s perspective, user data leakage poses a threat to

classified programs and missions. Security experts need to know what data is being

stored on government devices in order to properly classify them. Knowing what data

is stored on devices requires a methodology to determine the format in which appli-

cations store user data. This research proposes the Dynamic Binary Instrumentation

Mobile Android Format Investigation and Analysis (DBIMAFIA) methodology to

determine the format of user data stored by Android applications.

1.2 Research Objectives

The goal of this research is to demonstrate that dynamic binary instrumentation

tools combined with static analysis tools can effectively be used to determine the data

format of popular Android applications.

1.3 Methodology

The initial steps of this research focus on understanding existing mobile data

analysis techniques and tools. The second step develops a methodology that explores

unique implementations of existing mobile analysis tools to allow for a dynamic ap-

proach to reverse engineer the formats of data stored by mobile applications. The

effectiveness of this methodology is demonstrated through the analysis of content and

format data from the following Android applications:

4

www.manaraa.com

1. Hago Games [21]

2. August SmartLock [22]

3. Samsung SmartThings [23]

4. Garmin Connect [24]

5. Whats App [25]

6. Instagram [26]

7. Ludo King [27]

8. Viber [28]

9. Tinder [29]

10. TextNow [30]

11. WPSOffice [31]

12. Harmony [32]

13. Wink [33]

14. Tile [34]

15. Yale Connect [35]

The methodology for this research can be broken into six main objectives: device

setup, initial analysis, class analysis, synthesis, and validation.

5

www.manaraa.com

1.4 Summary

The rest of this document is broken down into four chapters: background research,

methodology, results and conclusion. The background covers Android internals, the

reverse engineering process, a background in forensics and related work to provide

the background necessary to adequately understand this research and the value it

brings to the security of mobile and IoT communities. The DBIMAFIA methodology

covers device setup, the initial analysis of the Android application package (APK) and

application files, native library hooking, class analysis, and synthesis and validation

of results. In the results, we apply the DBIMAFIA methodology to 15 Android

applications and discuss the results of the analysis. The conclusion summarizes the

major conclusions of this research and discusses potential future work.

6

www.manaraa.com

II. Background and Literature Review

This chapter provides readers with the necessary context to understand the An-

droid operating system and how examiners can identify, extract and analyze data from

its file system. This information is invaluable to understanding the Dynamic Binary

Instrumentation Mobile Android Format Investigation and Analysis (DBIMAFIA)

methodology and its application in Chapter IV.

The background of this research is broken into four subsections: Android inter-

nals, reverse engineering, forensics, and related work. The Android internals section

gives a brief overview of the operating system and related components. The reverse

engineering section details existing static and dynamic Android reversing tools and

techniques, as well as methods for deciphering unknown file formats. The forensic sec-

tion gives readers the understanding necessary to see how the results of this research

contribute to the mobile forensics community. The related work section discusses

research and tools foundational to the DBIMAFIA methodology.

2.1 Android

This section provides a fundamental understanding of the Android Architecture,

the design of Android applications and how Android applications store and trans-

mit examiner data with an emphasis on databases and Java enterprise beans. This

foundation is necessary to understanding how examiners can reverse engineer appli-

cations. More background details can be reviewed in Google’s Android developer

documentation [1].

7

www.manaraa.com

2.1.1 Android Architecture

Android is an open source Linux-based operating system, designed for numerous

device types. Figure 1 breaks the platform into six major components: Linux ker-

nel, Hardware Abstraction Layer (HAL), Android Run-Time (ART), Native C/C++

Libraries, Java API framework, and System applications [1].

Figure 1: The Android software stack [1].

The Linux Kernel provides the foundation of the Android platform. The HAL

8

www.manaraa.com

provides standard interfaces for the higher level Java Application Program Interface

(API) framework to communicate with hardware. Android run-time implements the

API that runs each application in its own process with its own instance of Android

Run-Time (ART) [1]. ART runs at least one virtual machine for each application

by executing Dalvik Executable (DEX) files, a byte code format meant to optimize

memory usage [36]. Native C/C++ libraries use numerous Android system compo-

nents. These libraries implement many of the essential functionalities required by the

operating system and third party applications. The Java API framework exposes the

native libraries to higher-level applications. Lastly, the system applications provide

examiners interfaces for examiners to browse the web or message others, while also

allowing these basic functionalities to be built into third-party applications.

2.1.2 Android Application Fundamentals

Before a examiner can begin to reverse engineer an Android Application, he or

she must first understand the Android application components and how they work

together. This section explains the Android Application architecture.

All Android applications are written in Java, Kotlin, or C++. The Android Soft-

ware Development Kit (SDK) compiles application code with any data and resources

into an Android application package (APK) [1]. The APK contains all of the contents

of the application. Each application is isolated into its own security sandbox and is

treated as a different Linux examiner. By default every application is run as its own

process. The Android operating system implements the principle of least privilege to

ensure each application has access to components needed to run the application.

Application Components are the building blocks of the application. There are four

major components: activities, services, broadcast receivers, and content providers [1]

1. As displayed in Figure 2, these components reside in their own Dalvik virtual

1Note some examiners include a fifth category for permissions as shown in Figure 2

9

www.manaraa.com

machine while the application executes.

Figure 2: Android Application Components [2].

Activities serve as entry points for examiner interaction and represent a single

screen or examiner interface that facilitates a number of interactions between the

system and the application [1]. Activities keep track of what information is being

displayed on the screen to ensure related processes continue to run. Activities also

keep track of previously closed processes and their states to allow those processes to

be restarted. Lastly, activities facilitate the closing of processes and the sharing of

information across applications.

Services provide a method to keep an application running in the background of

another application [1]. For example, a music player streams music while an examiner

interacts with another application. The music service is not necessarily displaying any

examiner interface, but is still required to run to provide audio to the examiner. In

general there are two types of services: services the examiner is aware of and services

hidden from the examiner. The system is not likely to kill services the examiner is

10

www.manaraa.com

aware of, but there are circumstances where the system kills non-vital background

services to free up Random Access Memory (RAM) for other components. The job

scheduler class is used in Android 5.0 and later to schedule services and actions in an

efficient manner.

Broadcast receivers enable the system to deliver events to the examiner outside

the typical examiner flow [1]. This allows the application to respond to system-wide

broadcast announcements, even when the application is not actively running. A good

example is an application scheduling an alarm to post a notification to the examiner.

When the broadcast from the system is sent, the application’s broadcast receiver sees

the broadcast and initiates the alarm. Android implements a broadcast receiver as

a subclass of the broadcast receiver class, and delivers each broadcast as an intent

object.

Content providers manage shared sets of application data that can be stored in

any persistent storage location that your application can access [1]. For example

any Android application with proper permissions can query the content provider of

the application’s contacts to read and write data. From the system’s perspective a

content provider is an entry point into an application for publishing named data items,

identified by a Uniform Resource Identifier (URI) scheme. An application can decide

how it wants to map the data it contains to a URI namespace, handing out those URIs

to other entities which allows access to the data. Content providers allow the system

to access application data without the application running and implement a fine-

grained security model for application data. Content providers also can handle reads

and writes to private, non-shared application data. A content provider is implemented

as a subclass of Content Provider and must implement a standard set of APIs that

enable other applications to perform transactions.

The Android operating system allows an application to start another application’s

11

www.manaraa.com

components. For example, a messenger application could request the native camera

component to take a picture to send to another examiner within the messaging ap-

plication. Android applications do not have a single entry point. To activate a com-

ponent in another application, a message specifying the intent to start a component

is sent to the system. Given the application has the rights to use that application’s

component, the system activates the requested component and the image taken is

shared with the messaging application.

The manifest file informs the system what components an application contains.

Your application must declare all of its components in AndroidManifest.xml file at

the root of the application’s project directory [1]. The manifest also declares to the

system the permissions the application requires. In addition, it declares hardware and

software features used and sets the minimum API levels and API libraries required

to run the application.

2.1.3 Android Databases

Understanding how developers store application data is vital to deciphering de-

compiled code and determining the format of unknown file types. Databases are

the obvious choice when deciding to store data that needs be accessed by multiple

examiners. By definition, a database is an electronic system that allows data to be

accessed, manipulated, and updated [37]. This section focuses discussion on relational

databases, and object-oriented databases within the context of Android applications.

Java’s object-oriented nature was not designed with relational databases in mind.

Data stored in objects must be simplified in order to conform the scalar only format

of typical relational database requirements. Developers must query the relational

database, manipulate the data and then store that data into an object. Figure 3 is

a simple C# code example of querying data from an SQL database, reformatting and

12

www.manaraa.com

saving the data to the variable, name. These types of queries can usually be identified

by searching the code for mysql related commands in the decompiled code.

var person = "SELECT key, first_name, last_name, sex, age FROM

persons WHERE id = 1";

var result = context.Persons.FromSqlRaw(person).ToList();

var name = result[0]["last_name"];

Figure 3: Without object relational mapper [3].

Object relational mappers attempt to reduce this burden on developers. Object

relational mapper APIs allow the developer to call for the object, and the mapper

makes all the necessary queries to get the object from the relational database. This

comes at a cost of efficiency, as the data still needs to be manipulated every time data

is transferred to and from the database. Figure 4 is an example of the use of an object

relational mapper API, and how the query and data manipulation is abstracted from

the developer.

var person = repository.Get_person(1);

var first_name = person.Get_first_name();

Figure 4: With object relational mapper [3].

Object oriented databases seek to reduce the processing burden of the typical

database formats by storing the data in object form. This eliminates the need to

manipulate and reformat data as it is being read from and written to the database.

XML and NoSQL databases both support saving data in this form [4].

13

www.manaraa.com

NoSql databases are unique in the sense that they support unstructured storage.

As illustrated in Figure 5, this means fixed table structures are not required in NoSql.

These flexible key-value pair based structures allow databases to be schema-free or

blue print free.

Figure 5: Relational vs NoSQL [4].

In addition to storing data in object format, NoSql databases can also use column,

document, key value and XML store formats [4]. Despite their schema free nature,

NoSql databases still require application or type specific database parsers to properly

view the data within.

Ultimately developers have plenty of options. Databases are popular, but data

can be stored in other formats, potentially using other open source or proprietary file

formats.

14

www.manaraa.com

2.1.4 Enterprise Beans

This section provides an overview of enterprise beans and its sub-types. Under-

standing enterprise beans is important to this research because they are commonly

implemented in conjunction with various data serialization libraries. For more de-

tailed documentation on enterprise beans, refer to Java’s Enterprise Edition 6 docu-

mentation [38].

An enterprise bean is a server-side component that encapsulates the business

logic of an application, which is the code that fulfills the purpose of the application.

Enterprise beans simplify the development of large applications by putting beans into

Enterprise Java Bean containers (EJBs), keeping logic within the bean, and delivering

portable components [38]. EJB containers provide system-level services to the bean.

This allows the bean developer to focus on business problems, while the containers

handle system-level services. The client developer no longer has to code the routines

that implement rules or database access, because the bean contains this logic. The

application assembler can now build applications with these portable components.

Enterprise beans support interoperability; they can run across multiple devices,

while keeping their location transparent to clients. Additionally enterprise beans

support transactions, allowing concurrent access to objects, but maintaining data

integrity. Enterprise beans come in two types: session beans and message-driven

beans [38].

2.1.4.1 Session Beans

A session bean encapsulates business logic that a client can invoke locally or

remotely. To access an application on a server, the client invokes the session bean’s

methods. The session performs the work for its client, shielding it from the complexity

by executing tasks inside the server [38]. Note that session beans do not save data to

15

www.manaraa.com

a database and are therefore not persistent.

Session beans come in three types: stateful, stateless, and singleton. Table 1 ex-

plains when each type of session bean is necessary. A stateful session bean contains

the state of an object using instance variables that represent the state of a unique

client-bean session. This state is often referred to as the conversational states as the

client talks with its bean. When the client removes the bean, the session ends and

the state disappears. Stateless beans do not maintain a conversational state with

the client. When a client invokes methods of a stateless bean, the bean contains a

client-specific state for the duration of that invocation [38]. Once the method finishes

running, the state disappears. Pooling the stateless beans guarantees thread safety.

Additionally stateless beans only have to be stateless with regards to the client. The

private state of each bean can be held over to the next invocation. Unlike stateful

beans, stateless beans can support multiple clients. Singleton session beans are in-

stantiated once per application and exist for the entire life-cycle of the application.

They are designed for situations where a single bean is shared across clients, who are

concurrently accessing it [38].

16

www.manaraa.com

Table 1: Types of Session Beans.

Session Beans

Stateful

The bean’s state represents the interaction between bean and specific client

The bean needs to hold information about client across method invocations.

The bean mediates between the client and other application components.

The bean manages the work flow of several beans.

Stateless

The bean’s state has no data for a specific client.

A method invocation requires the bean to perform a task for all clients.

The bean implements a web service.

Singleton

State needs to be shared across the application.

An enterprise bean needs to be accessed by multiple threads concurrently.

The app needs a bean to perform tasks upon app startup and shutdown.

State needs to be shared across the application.

2.1.4.2 Message-Driven Beans

A message-driven bean allows asynchronous message processing between end points,

which session beans cannot support. Message-driven beans act as a Java Message

Service (JMS) listener. Messages can be sent by any Java EE component or JMS

application or system. Message-driven beans can process JMS and a variety of other

message types. Message-Driven beans have the following characteristics [38]:

1. They execute upon receipt of a single client message.

2. They are invoked asynchronously.

3. They are relatively short-lived.

4. They do not represent directly shared data in the database, but they can access

and update this data.

17

www.manaraa.com

5. They can be transaction-aware.

6. They are stateless.

Message-driven beans share a number of features with stateless session beans.

Neither of the bean instances retain data for specific clients. Both beans ensure that

all instances are equivalent, allowing proper pooling of beans. Lastly, both beans can

process data from multiple clients.

Message-driven beans handle state differently from instance to instance. The in-

stance variables of the message driven beans contain some state across client message

handling. They do this through the use of the Java Metadata Interface (JMI) API,

open database connections, or object references to enterprise beans [38]. Clients do

not invoke methods directly on the beans, but rather clients access the beans through

JMS or other similar protocols. They send messages to the destination and the

message-driven bean class acts as the message listener. When the message arrives,

the container calls the onMessage method to process the message. This method typ-

ically casts the message out to one of the five JMS message types and handles it

according to the logic of the application. onMessage often invokes helper methods

or other session beans to process the message and store it in a database. In short,

Message-Driven beans offer asynchronous message processing that avoids tying up

server resources.

2.2 Reverse Engineering Android Applications

Reverse engineering is a process of determining how a system works without access

to the source code or original specifications [39]. This process supports legitimate

interoperability to closed systems and illegitimate adversaries intent on gaining access

to unauthorized data.

18

www.manaraa.com

In this research, we divide reverse engineering into two categories: static and

dynamic software analysis. During static software analysis, the examiner takes the

executable code from the device, including the stored memory, and recreates the

software structure. Static analysis helps to create a flow diagram of software, to

assist examiners, and to derive the behavior and function of the code. Dynamic

analysis provides the software’s behavior, giving examiners insight into the volatile

memory being used during execution that may not be visible during static analysis.

From static and dynamic analysis, the examiner can determine the device’s behavior,

functions, protocols, and communication sensors of the device.

2.2.1 Static Reverse Engineering Android Applications

Application developers seldom release the source code of their applications [40].

Android application reverse engineering is necessary to understand how the appli-

cation communicates and stores information. While reversing Android applications

follows the traditional reverse engineering process, specific tools and techniques are

necessary to handle the intricacies of Android applications.

Static analysis of an application gives the examiner a better understanding of

the layout of the file system, without having to run the file [41]. Dr. Richard Dill

breaks down Android application reverse engineering into five distinct steps: Access,

Unpacking, Dissimilation, Building, and Signing [40]. These steps recognize the com-

mon process used to reverse engineer Android applications, however the building and

signing steps are only necessary for cases when the application is modified to support

other analysis techniques.

Access

In order to retrieve an APK for an Android application, the examiners must either

download the APK file using websites like Apkpure.com [42] or Apkmirror.com [43] or

19

www.manaraa.com

retrieve them directly from the phone. Examiners statically analyze the downloaded

APK to determine the application’s layout. However, used applications retrieved

from a device provide the examiner with more data to analyze.

The Android operating system does not initially allow examiners to access their

application’s internal files. Linux partitions files and limits access to the internal file

system. In order to retrieve these files, the examiner must first elevate privileges to

root access; this can be gained by unlocking your bootloader and running an SU binary

in the system partition [44]. When an application tries to run, the operating system

then checks this SU binary to ensure that the application attempting to run as root

has been verified to have root privileges [44]. A SuperUser management application is

then used to grant privileges to applications on your system. Many rooting methods

exist; some to specific hardware manufacturers, while others generically run on any

device running the Android operating system. After gaining root privilieges, the

examiner can use Android Debug Bridge (ADB) to access the entire file system.

Unpacking

Once the APK is acquired, the APK is unpacked to expose the application’s files

and DEX code. The Android operating system uses the ZLIB format to compress

its applications before distributing applications via the Google Play Store [45]. Files

compressed with the ZLIB compression package can be unpacked using popular tools

such as 7Zip [46] or JADX [47]. Unpacking reveals the application’s file system. From

this, examiners have access to readable files with known file formats, however .DEX

file(s) requires dissimilation to be further examined.

Dissimilation

Dissimilation requires the examiner to either disassemble or decompile the un-

packed .DEX files to properly convert the .DEX files into meaningful information [40].

Disassembly of the unpacked .DEX files results in Smali code [48], an intermediary

20

www.manaraa.com

language between the source and the byte code. Smali and Baksmali are respectively

assemblers and disassemblers for the .DEX file format [49]. Smali code describes at

a low level how and where the Android application stores information in registers,

variables, methods, and various memory locations. Decompiling the byte code of

the .DEX file results in a Java code representation, which is not the original source

code, but logically equivalent. The logically equivalent Java code is another way for

examiners to understand the application’s code. JADX, JEB [50], and IDA Pro [51]

are all popular decompilers for the dex file format.

Building

The building phase consists of reassembling the files of the application back into

an APK. Android Studio and ApkTool are both free tools that can be used to build

APKs.

Signing

The last step is to sign the APK before dissemination. This is done using a public

key certificate and allows Google to ensure that all future updates come from the

same developer. This can be accomplished using the build feature in Android Studio

[52].

2.2.2 Dynamic Reverse Engineering Android Applications

This section demonstrates three effective dynamic reverse engineering techniques

for the Android operating system: sandboxing, debugging, and dynamic binary in-

strumentation. Unlike static reverse engineering that provides a picture of the appli-

cation without execution, dynamic reverse engineering allows the examiner to observe

the application’s behavior as it executes [41].

Sandboxing

Sandboxing allows examiners to understand how applications work without hav-

21

www.manaraa.com

ing access to the original application’s source code. Sandboxes execute applications

within various types of containers that log relevant actions and changes to memory.

Sandboxes are useful to detect malware and log internet requests. Cuckoo-droid [53]

and Joe Sandbox [54] are both Android sandboxes that offer detailed information on

applications.

Debugging

Debugging allows an examiner to set breakpoints in the code of an application

to view variable types and data as they are stored on the memory heap and stack.

Debugging allows examiners to dynamically watch data while it is being transformed.

Developers release Android applications without debugging enabled, requiring ex-

aminers to decompile, enable debug mode, recompile, resign, and reinstall the appli-

cation before Java code debugging can occur with the native Android Studio applica-

tion. This method allows examiners the ability to step through the decompiled Java

code of the application. Android studio provides Android debugging functionality for

free [52], but requires some version of Java source code. The Smalidea plugin [48]

for Android Studio allows the examiner to step through the unpacked .DEX files of

an application, without ever having to decompile or repackage an application [48].

Android debuggers like IDA Pro [51] and JEB [50] offer paid debugging options.

Dynamic Binary Instrumentation

Dynamic binary instrumentation provides the ability to modify application be-

havior at run-time. These methods inject an agent into the application, that allows

methods and data to be changed during application execution. This can be used

to display or modify variables upon entering or exiting a function as pushed on the

stack.

One such tool, Frida [5], injects a Javascript engine into the application, allowing

examiners to write Javascript code to interact and change code of the application

22

www.manaraa.com

as it executes. This allows the examiner to manipulate and analyze applications as

needed.

Figure 6 illustrates how Frida interacts with the target application to run custom

Javascript code to modify functionality at runtime. Frida begins by saving the frida-

agent shared library to the application. The Linux Ptrace command is used to

hijack thread2. The hijacked thread writes the bootstrapper to memory, a program

that creates a thread without user interaction. The bootstrapper creates the Frida

thread within the program. The Frida thread loads the frida-agent into memory, and

a connection is established with the debugger process to inject any code from the

examiner. The hijacked thread resumes, and the debugged process runs as normal.

Figure 6: How Frida Interacts with Application [5].

Rather than modifying the code at rest or while debugging the code, Frida’s

technique of code injection modifies the code at run-time. This subverts common

anti-reverse engineering techniques that look for signs of code modification or changes

common to debuggers’ breakpoints.

23

www.manaraa.com

2.2.3 Anti-Reverse Engineering Techniques

Developers work to protect the application examiner data, employing a variety of

techniques to thwart reverse engineering. This section focuses on methods to protect

data at rest and methods to protect data during execution.

Proguard, an application obfuscator, is a free program that shrinks Android APKs,

optimizes code, and obfuscates classes, methods, and variables. Proguard’s obfusca-

tion techniques rename and remove unused variables, classes and methods. This

makes code analysis challenging, because variable, method and class names help de-

termine the application’s functionality. Additionally, Proguard’s effect on proper

decompilation can prevent functions from being properly decompiled to Java code. If

the improperly decompiled code should ever be modified and re-compiled, the appli-

cation is likely to fail at compilation [55].

Java-level debugging is a reverse engineering technique to help understand code

flow, however all applications are by default not debuggable. An examiner can alter

the flag in the application’s manifest.xml file, but this requires the application to be

decompiled, modified, resigned, and redeployed. Even with this illicit modification,

application developers employ methods to detect and prevent their applications from

being debugged: code hashing, time checks, Tracer Process Identity (TRACERPID)

comparisons, and certification validation.

Any time a break point is set, the code is modified [56]. This change results

in a modified hash of that given block of code. Concerned developers check hashes

of portions of code during execution to detect and crash a debugged version of the

application.

Timing checks identify delays in code execution to determine whether an applica-

tion is being debugged [56]. This method is only as secure as the timing mechanism

used to detect delays. A reverse engineer could spoof the timer to convince the

24

www.manaraa.com

application that it is in fact running as normal.

The TRACERPID represents the process id (PID) of the application that is trac-

ing the existing process. This value is normally zero, however when debugging, this

value is set to the PID value of the debugger. Developers can check this value at

random times during execution to detect and crash the application when it is being

debugged [56].

Developers can view the certificate being used to run the application to determine

if it is equivalent to the original [56]. Repackaged applications fail this check, as they

are not signed with the original certificate.

Dexguard [57] and Dexprotector [58] are both commercialized programs that im-

plement several anti-debugging techniques to keep applications safe from a variety

of debugging techniques. A reverse engineer could search the decompiled code for

comparison operators and remove them from the application, but is time consuming

and tedious.

2.2.4 Deciphering file formats

This section details traditional static and dynamic reversing techniques to decipher

file formats, as first described in Secrets of Reverse Engineering [59], Eilam.

First, the examiner should determine the purpose and intent of the application.

Second, the examiner identifies known, easy to spot values in the analyzed files. This

may or may not be possible depending on encryption, compression, or obfuscation lev-

els. Third, Eliam recommends providing different inputs to monitor how the targeted

file changes. The fourth step is to verify that features such as passwords are indeed

checked when interacting with the application. The fifth step involves opening the

file in a hex editor and checking the first couple bytes for a file signature and making

observations on the rest of the file. Eliam mentions character distribution analysis as

25

www.manaraa.com

a method of determining whether or not the file is encrypted. The sixth step focuses

on creating a list of all imported functions using programs such as Windows Dumpbin

[60]. This list provides an overview of how the program works and reads and writes to

files. He recommends placing break points on function calls identified to the imported

functions to help dynamically step through the program in a debugger. He provides

a specific Windows example, examining entries in the Kernel32.dll and uses that

to trace calls to the file input and output APIs.

2.3 Forensics

Although this research is founded on reverse engineering principles and processes,

it is also necessary to understand the forensic process in order to see how the results

of this research can be applied to extracting forensically relevant data. The major

distinction between the two fields is that forensic results typically support the enforce-

ment of the law and attempt to minimize changes made to a system, whereas reverse

engineering attempts to understand how a system works. This section is broken into

four forensic specialties: traditional, digital, mobile, and Internet of Things (IoT).

2.3.1 Traditional Forensics

Forensics is the discipline of applying scientific knowledge to legal problems [61].

Forensic science is therefore any science used for the purpose of law [61]. All forensic

sciences are founded in Locard’s principle, which states that “any two objects that

come in contact with each other will exchange material.” This leads to the conclusion

that a person or object always leaves a trace when visiting a place or crime scene.

It is upon this theory that the Organization of Scientific Area Committees (OSAC)

developed a framework for harmonizing forensic science practices. OSAC’s framework

divides the forensics process into four distinct parts [62]:

26

www.manaraa.com

1. Authentication: Verify the claim.

2. Identification: Associate the entity with the action taken.

3. Classification: Compare different pieces of evidence to identify specific origin(s).

4. Reconstruction: Put the evidence together to answer the who, what and where.

Each step should be a repeatable and consistent process that makes up the greater

forensics framework. All four parts act as individual forms of evaluation that help

inform and refine the other parts of the forensics process. OSAC determined that the

value of forensic science was its use of scientific reasoning to provide decision-makers

with an understanding of evidence presented to help them make educated decisions.

2.3.2 Digital Forensics

Digital forensics includes everything from physical electronic devices to network

traffic and various digital media forms. Locard’s principle states that any interaction

with an electronic device leaves a trace. On a relatively small system, examiner

interaction, programs running in the background and logging of file system changes

add up to hundreds of gigabytes of digital forensics data. Locating evidence that is

relevant to a case among the billions of other bytes of information can be challenging.

OSAC’s framework applies to all forensic processes, including those outside the

realm of electronics. It is upon this framework that many digital forensic processes

are developed. While digital forensic processes vary greatly by situation, the four

principles that ring true across most processes are [63]:

• No action should be taken that changes data that may later be used as evidence.

• Any examiner accessing original data should be competent and able to explain

necessity and implications of actions taken.

27

www.manaraa.com

• Steps taken should be repeatable and properly documented such that another

examiner could reach the same results.

• Reconstructions: Put the evidence together to answer the who, what and where.

With these principles in mind many digital forensic investigations begin by making

a bitwise copy of the contents of a computer’s hard drive. Following this a capture of

the system’s memory is made. Most examiners then perform analysis on the copied

drives, and memory capture, ensuring analysis tools do not affect the original drive

or system. Please note that most memory capture tools and some hard drive copying

methods leave at least some trace on the machine; it is therefore imperative that

examiners are knowledgeable of exactly what traces are left from their activity on the

original drive.

2.3.3 Mobile Forensics

Mobile forensics is a subset of digital forensics that frequently refers to the exam-

ination of smart phones [64].

Mobile forensics would ideally follow the same process of imaging the contents

of a smart phone’s hard drive and performing a capture of the phone’s memory.

Unfortunately, forensics on mobile phones is difficult because of safeguards phone

manufacturers, carriers and developers have put in place. Open source and com-

mercial mobile forensic programs rely heavily on kernel or root access to a device to

function properly. The ideal of not changing a single bit on a mobile device during

the forensics process is therefore not practical [65]. This has lead many to be skep-

tical of the forensic soundness of mobile forensic techniques. However, with proper

technical expertise, it is possible to extract valuable evidence from mobile devices

[66]. To do so, the examiner must ensure that they can properly explain the necessity

and implications of any actions taken. Mobile security risks can be broken into three

28

www.manaraa.com

risk categories: physical, service, and application [67]. These risks are assessed to

ensure that evidence on mobile devices has not been altered before, during, or after

the collection of devices.

2.3.4 IoT Forensics

An IoT device is defined as any embedded device with the capability of remote

connectivity. The examination of IoT devices crosses several forensic disciplines.

There is onboard memory on most IoT devices that typically stores firmware and

small amounts of log data. There are also numerous mobile companion applications

that help set up, control and store varying amounts of IoT data.

Accessing IoT data from these locations requires the examiner to interact with the

device’s onboard memory via physical acquisition of a JTAG port. Other methods

require examiners to desolder the memory chip and to solder it onto an identical

device. These methods alter the state of hardware and carry severe risk of destroying

potential evidence.

IoT mobile applications have the potential to store valuable IoT data but require

examiners to gain kernel or root privileges to access most data. Rooting common

mobile devices requires a device password, and an available exploit to utilize a vul-

nerability in a specific version of hardware and software. Despite these difficulties

experts focus many investigations on mobile devices, because they frequently contain

large amounts of pertinent examiner data from a variety of sources.

2.4 Related Work

Related work is broken into six categories of tools and research: Disassemblers and

Decompilers, Static Instrumentation Tools, Dynamic binary instrumentation Tools,

Application Analysis, Data Collection Tools, and Android File Format Analysis. All

29

www.manaraa.com

six categories of tools and research are closely related to developing a methodology

to determine the format of Android application examiner data.

In support of the United States Air Force Research Labratory (AFRL), TwoSix

Labs released a research paper in December 2019, documenting and comparing pop-

ular disassembly and decompilation, static instrumentation, and dynamic analysis

tools [6].

2.4.1 Disassemblers and Decompilers

TwoSix Labs analyzed and compared IDA Pro [51], Ghidra [68], and Binary Ninja

[69]. These disassemblers and decompilers were presumably chosen for their popular-

ity amongst the reverse engineering community. All three programs support disas-

sembly of various architectures, but Binary Ninja currently lacks decompilation ca-

pabilities. Both Ghidra and IDA Pro decompile most binaries to a C like pseudocode

that can aid examiners in reverse engineering binaries from a variety of architectures.

Binary Ninja’s lack of decompilers is supplemented with a variety of intermediate lan-

guages that focus more on readability of code, rather than reproducing source code.

TwoSix labs found all three tools to offer advantages in particular use cases. Figure 7

summarizes the features of all three tools.

2.4.2 Static Instrumentation Tools

TwoSix Labs analyzed three static instrumentation tools that facilitate debugging,

tracing and profiling [6]. Multiverse [70] is a static rewriter that can add or remove

security features of a binary without debug symbols or relocation entries. Multiverse

does so by disassembling the binary into a superset disassembly that contains all

legal instructions and then uses an instruction rewriter to relocate instructions and

modify control flow. Note that while Multiverse’s core functionality does not require

30

www.manaraa.com

F
ig

u
re

7:
D

is
sa

ss
em

b
le

rs
/D

ec
om

p
il
er

s
C

om
p
ar

is
on

[6
].

31

www.manaraa.com

instrumentation, some of its more advanced capabilities require instrumentation to

be present. DDisasm [71] aims to provide examiners with a tool that can disassemble

executables into a form that can be correctly assembled back into an execuatble in

a fully automated manner. In tests DDisam correctly reassembled 98.44 percent of

binaries. Note that both Multiverse and DDISAM were designed specifically for the

x86 architecture, and not Android architectures. Library to Instrument Executable

Formats (LIEF) was the last static instrumentation tool mentioned and it was men-

tioned because of its amount of documentation and ease of use. It offers Python,

C++, and C APIs to parse, edit and analyze executables. LIEF works with Linux,

macOS, Windows, and Android x86 binaries. Figure 8 summarizes the features of all

three tools.

Figure 8: Static Instrumentation Tools Comparison [6].

2.4.3 Dynamic Binary Instrumentation Tools

TwoSix Labs compared performance and use cases between two dynamic binary

instrumentation tools: rr [72] and Frida [51]. The rr open source x86 debugger enables

examiners to deterministically replay execution and reverse execute from a breakpoint

[73]. The goal is to provide examiners with the ability to retrigger crashes. Frida,

32

www.manaraa.com

as discussed in the background of this research, is a dynamic binary instrumentation

toolkit designed for x86 and ARM architectures. TwoSix Labs found Frida’s ability

to inject code and trace execution to enable new methods of reverse engineering.

Figure 9 summarizes the features of both dynamic binary instrumentation tools.

Figure 9: Dynamic Binary Instrumentation Tools Comparison [6].

2.4.4 Application Analysis

Sicurezza Reti explored how Java method hooking could dynamically check appli-

cations for malicious code or vulnerabilities [36]. His research successfully identified

private examiner information accesses, internet connections, and deprecated or inse-

cure protocol usage. His research utilized Android Dynamic Binary Instrumentation

(ADBI) and Legend [74] to hook methods and analyze 32-bit applications running on

Android versions 4.2-6.01 [75].

2.4.5 Data Collection Tools

In June of 2018, Ricordo Spolaor published research on DELTA, a data extrac-

tion and logging tool for Android [76]. He categorized smartphone data into three

33

www.manaraa.com

categories: sensor data, device context data, and examiner interaction. Spolaor men-

tioned Android data collection tools: Systemsens [77], DroidWatch [78], Mobilsens

[79], PhoneLab [80], LiveLab [81], and DeviceAnalyzer [82]. He stated that these

tools fail to provide a modular design, consistency in data collection, and consistency

in sampling rates. Spolaor argued that DELTA meets these requirements and claimed

that DELTA collected data from more sources than any of the aforementioned tools.

DELTA and the five other tools mentioned in Spolaor’s report lack any support for

extraction of data from application specific databases. Andriller [7], an open source

forensic decoder, offers its examiners decoders for Android applications. Figure 10

shows the decoders available through Andriller. The tool focuses on the extraction

of text and voice messages from the Android operating system and popular Android

messaging applications. This research found Andriller to be the best open source

Android forensic tool that extracted examiner data from applications. Although it

focused specifically on voice and messaging applications, its interface, feature set, and

modularity set it apart from other Android forensic tools.

34

www.manaraa.com

Figure 10: Andriller’s Decoders [7].

2.4.6 Android File Format Analysis

Dr. Richard Dill’s research explored the automation of mobile device file format

analysis. Dr. Dill parsed and prepped applications to display proper method offsets.

He created and ran the Automated Data Structure Slayer (ADSS) to automate the

injection of hooks to uncover structures used to store and process application data.

2.4.7 Related Work Summary

This section discussed six categories of tools and research that are foundational

to this research. The DBIMAFIA methodology builds off of Dr. Dill’s and the afore-

mentioned tools and research to provide examiners with a way to approach mobile

data format analysis that does not require the parsing and prepping of an application.

35

www.manaraa.com

2.5 Summary

This chapter covered Android internals and the reverse engineering process, pro-

vided a background in forensics and related work necessary to understand this research

and the value it brings to the security of mobile and IoT communities.

36

www.manaraa.com

III. Methodology

In this research we debut the Dynamic Binary Instrumentation Mobile Android

Format Investigation and Analysis (DBIMAFIA) methodology for analyzing formats

of mobile application data. The DBIMAFIA methodology covers device setup, initial

analysis of the application and its files, native method hooking, class analysis, and

the synthesis and validation of results. Step one of DBIMAFIA focuses on gaining

root access. Step two primarily focuses on application file analysis and unpacking

and decompilation of the app’s Android application package (APK). Step three of

DBIMAFIA explores how dynamic binary instrumentation tools can be used to hook

native method calls. Step four uses static and analysis and dynamic binary instru-

mentation to analyze Java classes. Step five synthesizes the findings from the class

analysis phase to come to conculsions about how the application is storing and ma-

nipulating user data. The sixth and final step uses a byte debugger to determine the

validity of conclusions made in step five.

Figure 11: DBIMAFIA Methodology Overview.

37

www.manaraa.com

3.1 Device Setup

The DBIMAFIA methodology requires elevated access to the mobile phone’s in-

ternal file system to determine how data is processed by the application. In step one

of the DBIMAFIA methodology, the examiner gains root access to the mobile device

to ensure he/she has access to necessary files.

The examiner downloads and installs the Android SDK platform-Tools package

to a computer [1]. This package contains Android Debug Bridge (ADB), a command

line tool that interacts with the Android device. The examiner executes the following

steps to achieve root access [83]:

1. Enable Developer Options and Unlock Bootloader.

2. Install Magisk Manager.

3. Push factory boot image to device.

4. Patch the boot image

5. Restart and flash phone with modified boot image.

Once the phone is rooted, the examiner installs Frida server to support dynamic

analysis [5].

3.2 Initial Analysis

The second step in the DBIMAFIA process is responsible for the analysis of files

changed due to examiner interaction and the unpacking and decompilation of the

application’s APK. Initial Analysis is broken into six subsetps:

1. Logical copy of application and APK

38

www.manaraa.com

2. Application interaction

3. File analysis

4. Unpack and decompile/disassemble APK

5. ID libraries and application architecture

6. Modify Frida for 32-bit support

3.2.1 Initial Analysis Step One: Logical Copy of Application files and

APK

The examiner pulls a copy of the APK and stored application data in the \data

\data\com.appname.example\ directory, before dynamically interacting with the ap-

plication. This gives the examiner a way to come back to a fresh state between each

test and supports the need for file comparison in the initial analysis phase.

The next step is recording the time that interaction with the application began.

This research found that creating an empty file immediately before application inter-

action creates a reference point to identify future file changes.

3.2.2 Initial Analysis Step Two: Application Interaction

At this point the examiner opens and interacts with the app, testing each feature

to identify how data is stored. For applications requiring external hardware, this step

requires the examiner to interact with the external hardware. Next, the examiner

notes the file changes since the creation of the blank file. The “-newer” option of the

Linux find command provides examiners with a way of recording recently modified

files.

Examiners run Modification Detective, a script found in Section 1.1 of the Ap-

pendix, to automate the majority of this process. User-input for both the application

39

www.manaraa.com

and external devices is still required. Modification Detective creates a blank file in

the \sdcard folder and waits a specified number of seconds for user interaction. Files

that change while the script is running are pulled back to the examiner’s computer.

3.2.3 Initial Analysis Step Three: File Analysis

In this step, the examiner analyzes the structure of the APK via static analysis.

The examiner begins with using the Linux diff command to compare the modified

files with the files saved prior to interaction. The Linux file command is then used to

determine the file type of the modified file(s). Linux’s binwalk -E is used to output

an entropy graph that examiners can use to determine whether the file is obfuscated or

encrypted. Examiners look for linear entropy graphs to identify encrypted files. The

Linux strings command is run on the file of interest to identify American Standard

Code for Information Interchange (ASCII) strings. If examiners come across plain-

text or known file types, they should skip to step 5 of the DBIMAFIA methodology

and summarize their findings.

3.2.4 Initial Analysis Step Four: Unpack and Decompile APK

As discussed in Section 2.1.1, applications are distributed in a compressed package

known as an APK. To analyze an application, the examiner must unpack the APK

into .DEX and application files. The .DEX files are then disassembled and decompiled

into Smali and Java pseudocode. JADX automates this process; it takes an inputted

APK, unpacks, disassembles and decompiles the application for the examiner [47].

40

www.manaraa.com

3.2.5 Initial Analysis Step Five: Identify Imported Libraries and Ap-

plication Architecture

Examiners open the \lib directory inside the unpacked APK and analyze the

libraries within. The folder name within the \lib directory distinguishes the applica-

tion’s architecture. The examiner now searches the names of the shared library files

to determine the associated library names.

3.2.6 Initial Analysis Step Six: Modify Frida for 32-bit Applications

In order to get access to contents of the stack on 32-bit applications, Frida’s thread

and context pointers must be manually modified. These modifications ensure that the

DebugStackVisitor class in the hook script properly hooks the targeted application

methods. The DebugStackVisitor class extends the ArtStackVisitor class in the

Android.js file of the Frida-Java environment. The ArtStackVisitor class utilizes

Native Android APIs to display information on the memory stack.

The android.js file within the \lib folder of the Frida-Java-Bridge environment

[5] is modified. Changes are made to the ArtStackVisitor class to adapt it for the

32-bit version of the libart.so. This modification adds offsets to the thread and

context pointers to ensure they address the proper portions of memory. Examiners

calculate the offsets using a modified version of Oleavr’s art-internals probe.py script

[84]. The original script found offsets for the virtual machine and instrumentation.

Modifications to the script are made to calculate the thread and context offsets of the

desired architecture and Android version. Android’s open source nature allows users

access to the operating system’s C object files. The script accepts a C++ source code

file and modifies all private methods to public. Then, the script uses C’s offsetof()

macro [85] to calculate the offsets of the thread and context fields.

The following changes are made to the android.js code of the Frida-Java-Bridge

41

www.manaraa.com

environment:

As demonstrated in Figure 12, the line calculating the thread and context pointers

is replaced by two lines that add offsets to the thread and context pointers.

//api[’art::StackVisitor::StackVisitor’](visitor, thread, context,

// WalkKind[walkKind], ptr(numFrames), checkSuspended ? 1 : 0);

visitor.add(4).writePointer(thread); //thread, of type pointer

visitor.add(40).writePointer(context); //context, of type pointer

Figure 12: Offsets added to thread and context pointers.

Additionally the line in Figure 13, that imports the 64-bit frame information is

removed.

/* this._getCQFIImpl =

api[’art::StackVisitor::GetCurrentQuickFrameInfo’]; */

Figure 13: Remove 64 bit frame info import.

These changes allow examiners to use the ArtStackVisitor class to view the

contents of the memory stack of 32–bit Android applications.

3.3 Native Method Hooking

The third step of the DBIMAFIA methodology is responsible for the hooking

of the native libc.so open() and write() methods to provide the examiner with

knowledge about where to begin class analysis. This section is broken into three

substeps:

42

www.manaraa.com

1. Hook open and obtain file descriptor

2. Hook write and dump stack, and written methods

3. Analyze written data

3.3.1 Native Method Hooking Step One: Hook Open Methods and

Obtain File Descriptor

The examiner must hook the open() and obtain the file descriptor prior to hooking

the write(). There are multiple native libraries that read, write, and transform files,

but the libc.so native library is the most common. The libc.so open() method

takes in three arguments: file path, flags specifying read or write permissions, and

a mode that details which user groups have what access [86]. Figure 14 illustrates

an open() call hook that takes in the file path and compares it to the file path of

interest. When they match, the file descriptor is saved for later comparison in the

libc.so write() hook.

Figure 14: Obtaining File Descriptor.

43

www.manaraa.com

The examiners use code in Figure 15 to hook the libc.so open() method and

capture the file descriptor. As we recall from Figure 14, libc.so open() accepts the

file path, the flags and the mode as arguments.

open_hook =
Interceptor.attach(Module.findExportByName(’libc.so’,’open’),{

onEnter: function (args) {
var value = Memory.readUtf8String(args[0]);
if (typeof value !== ’undefined’) {

/* If the target file name is found in the arguments, save the
file name.*/

if (value.indexOf(target_filename) !== -1)
this._open_fileName = value;}

},
onLeave: function (retval) {

// If valid file descriptor, add to file _descriptor_array
if (retval.toInt32() > 0) {

file_descriptor_array[retval.toInt32()] = this._open_fileName;}
}});

Figure 15: Javascript hook of libc.so open().

3.3.2 Native Method Hooking Step Two: Hook Write, Dump Stack

and Written Data

As shown in Figure 16, the examiner hooks the libc.so write() method to dump

the memory stack prior to writing data to the target file. If the libc.so open() or

write() methods are not hooking as expected, open up the Linux man page [86]

and explore other methods involved with saving data. Libc.so’s iotcl(), fnctl(),

write64, pwrite64, pwrite, writev, and put() are other native candidate methods

to hook.

44

www.manaraa.com

Figure 16: Dumping Stack.

As shown in Figure 16, the libc.so write() hook grabs the file name associated

with the inputed file descriptor. Upon the libc.so’s return, the file name compares

to the target filepath, and the dumpstack() method executes.

45

www.manaraa.com

write_hook = Interceptor.attach(Module.findExportByName(’libc.so’,
’write’),{

onEnter: function (args) {
try{
/*Write_filename is set to the associated file name in the
file_descriptor array.*/
this._write_fileName = file_descriptor_array[args[0].toInt32()]
}
catch{throw new Error("Invalid file_descriptor array reference");}

;
},
onLeave: function (retval) {

if (retval.toInt32() > 0) { //Ensures valid return value
//If file name equal to target file name, dump the stack
if (typeof this._write_fileName !== ’undefined’) {

if (this._write_fileName.includes(target_filename) !== -1){
console.log(’\nFILENAME: ’ + this._write_fileName);
dumpStack();
open_hook.detach();
write_hook.detach();

}}}
});

Figure 17: Javascript hook of libc.so write().

As shown in Figure 18, the dumpstack() method is called from the write hook.

dumpstack() grabs the correct virtual machine and creates a new environment in

order to access and print the methods on the stack. It then passes in a thread from

that environment into the DebugStackVisitor method.

46

www.manaraa.com

function dumpStack() {
if (Java.available){

const vm = Java.vm;
const env = vm.getEnv();
Java.perform(function (){

withRunnableArtThread(vm, env, thread => {
const visitor = new DebugStackVisitor(thread);
console.log(’>>> walkStack’);
visitor.walkStack(true);
console.log(’<<< walkStack’);

});
});

}
else

console.log("Java NOT AVAILABLE");
}

Figure 18: Dump methods on the stack.

The DebugStackVisitor() method, found in Figure 19, takes in a thread and

outputs method names and frame info on every method on the stack. As we discussed

in section 3.2.6, the ArtStackVisitor class utilizes Native Android APIs to display

information on the memory stack.

47

www.manaraa.com

class DebugStackVisitor extends ArtStackVisitor {
constructor(thread) {

super(thread,
getApi()[’art::Thread::GetLongJumpContext’](thread),
’include-inlined-frames’);

}
visitFrame() {

const location = this.describeLocation();
console.log(‘\t${location}‘)
const method = this.getMethod();
if (method !== null){

console.log(‘\t\tArtMethod=${method.handle}‘);
const frameInfo = this.getCurrentQuickFrameInfo();
if (frameInfo !== null) {
console.log(‘\t\tframeInfo=${JSON.stringify(frameInfo)}‘);

}
}
return true;

}
}

Figure 19: Debugging Stack Visitor.

We clear the data and cache prior to hooking the libc.so open() to force the

application to re-open the data.mdb file. Next, we execute monkey -p com.yy.hiyo

-c android.intent.category.LAUNCHER 1 to launch the default activity via the

ADB interface. The Frida command in Figure 20 uses the frida-Java-playground

environment to run user defined Javascript hooks on an application. The “-no pause”

Frida argument is added to the Frida hook command to ensure that it hooks the libc

open immediately after the application began running.

frida -U com.yy.hiyo -l _agent.js --enable-jit --no-pause

Figure 20: Frida command to inject hooks.

After executing the command in Figure 20, the application starts and the Javascript

code in figures 15, 17, 18, and 19 is injected.

A simplified example output of a hooked write call can be found in Figure 21.

48

www.manaraa.com

The value 2020 was written to the file and displayed in figure 21. In the case of

non-readable type variables, Java prints the type of the variable. This requires more

analysis to determine exactly what data is being written. In figure 21 there are three

methods on the stack when the write call is made. Note that this displays only those

methods on the stack and not necessarily every method called prior to the libc.so

write(). The methods go from most recently called on the top to oldest on the

bottom. In this example the io.value class’s store() method is the last method

called. The bool preceding the class name represents the return type of that method

as a boolean operator. In some cases the walkstack output gives enough information

to get a top-level view of how data is retrieved or manipulated prior to being written

to a file. This may be enough for an examiners needs. In other cases, the data’s

format is still unclear and continued dynamic and static analysis is required.

In Figure 21, calls are made to userinput(), add(), and multiply() methods,

and would likely infer that some values were inputted by the examiner and then im-

mediately multiplied together. While the walkstack output can be useful, examiners

follow up with static analysis to ensure that relevant method calls not on the stack

are analyzed.

49

www.manaraa.com

Written data: [2020]

>>> walkStack

[Top of Stack (Most Recently Called)]

Visiting method ’bool io.value.store(int[])’

Visiting method ’int[] io.value.add(int)’

Visiting method ’int com.example.multiply(int[])’

Visiting method ’int[] com.example.userinput()’

[Bottom of Stack]

<<< walkStack

Figure 21: Method Calls from Memory Stack

3.3.3 Native Method Hooking Step Three: Analyze Written Data

This subsection focuses on analyzing the data written to the file of interest. If the

examiners are immediately able to identify the data’s format, they would skip to step

5 of the DBIMAFIA methodology. Otherwise, the examiners should use the methods

outlined in this subsection to attempt to determine the format of the bytes.

In many cases data is encapsulated within a Java object. If this is the case,

examiners should use Java’s Object.println() to obtain the ASCII representation

of the class. Additionally, examiners run the Object.getName() method on the

object to obtain the object’s class name. If this is unsuccessful, examiners use online

converters [87] [88] to convert the binary, decimal, or hex representation of the data

to unicode, utf-8, utf-16, utf-32, and ASCII formats to identify readable characters.

The examiners now know which methods were called prior to file libc.so write,

and have a better understanding of the data written to the file. If the examiners are

50

www.manaraa.com

able to identify the storage format at this step, they should skip the class analysis

section and begin synthesizing and validating their results.

3.4 Class Analysis

Step 4 of the DBIMAFIA methodology uses static analysis and dynamic binary

instrumentation to analyze Java classes. The goal of this step is to provide the

examiner with information to identify the purpose of every class that modifies user-

data.

Examiners begin analysis on the method called prior to the file write. This method

is at the top of the output of method calls output in Figure 21. After static analysis

of io.value.store(), examiners use the code in Figure 22 to print the method’s

arguments, return value, and the method that called the hooked method.

The code in lines 8 through 35 of Figure 22 is run in place of the original method.

To ensure the application runs properly, the original method is called on line 14 of

Figure 22 and the result is saved and returned on line 30. Line 38 and 39 of Figure 22

defines the class and method to be hooked. Line 40 defines the types of arguments

passed into the method.

This ability to re-implement any method allows the examiner access to any data

that the original method would also have access to. In the case of the code in Fig-

ure 22, the examiner uses this to print the values found on the stack. However, Frida

is not limited to reading values on the stack, Frida can read and modify data at the

same permission level of the existing method call.

The examiner uses the calling method output to trace the method calls until they

find the code responsible for manipulating or creating the user data. The code in

Figure 22 gives the examiner the context to understand the purpose of each Java

method, attribute and class.

51

www.manaraa.com

1 function hook(obj, options) {
2 var Exception = Java.use(’Java.lang.Exception’);
3 var func = options[’function’] !== undefined ? options[’function’] :

’$init’;
4 var args = options[’arguments’] !== undefined ? options[’arguments’] :

[];
5 var debug = options[’debug’] !== undefined ? options[’debug’] : false;
6 var callOriginal = options[’callOriginal’] !== undefined ?

options[’callOriginal’] : true;
7 var callback = options[’callback’] = options[’callback’];
8 try {
9 Java.use(obj)[func].overload.apply(null, args).implementation =

function() {
10 var args = [].slice.call(arguments);
11 var result = null;
12 // Call Origin Function If True
13 if (callOriginal) {
14 result = this[func].apply(this, args, self);
15 }
16 if (callback) { // Call Callback If Exist
17 result = callback(result, args);
18 }
19 // Debug Log
20 if (debug) {
21 var calledFrom =

Exception.$new().getStackTrace().toString().split(’,’)[1];
22 var message = JSON.stringify({
23 arguments: args,
24 result: result,
25 calledFrom: calledFrom
26 });
27 console.log(obj + "." + func + "[\"Debug\"] => " + message);
28 }
29 // Return Result
30 return result;
31 };
32 } catch (err) {// Error Log
33 console.log(obj + "." + func + "[\"Error\"] => " + err);
34 }
35 }
36 // Example Usage
37 Java.perform(function() {
38 hook("com.example.app", {
39 function: "a",
40 arguments: [’Java.lang.CharSequence’],
41 debug: true,
42 callOriginal: true,
43 callback: function(originalResult, args, self) {
44 console.log("Args: " + args);
45 console.log("Result: " + originalResult);
46 return originalResult;
47 }
48 });

Figure 22: Method Hook.

52

www.manaraa.com

3.5 Synthesis

The fifth step in the DBIMAFIA methodology synthesizes the findings from the

class analysis phase to come to conclusions about how the application stores and

manipulates user data. Illustrating individual method, attribute and class results

in tables helps the examiner portray the results in an easy to read format. The

examiner also ensures that findings from each class are synthesized to articulate how

the application stores the user data.

3.6 Validation

The sixth and final step uses a byte debugger to determine the validity of conclu-

sions made in step five.

Examiners use the smalidea plugin [48] with Android Studio to step through the

.DEX files unpacked in Section 3.2.4. This does not require source code or repacking

of the app’s APK. Examiners set break points inside relevant methods identified in

the class analysis and synthesis steps to validate:

1. The values held by Class attributes.

2. The functionality of identified methods and classes.

3. The control flow of the application’s data serialization process.

Debuggers may not run on every application, due to the reasons outlined in Sec-

tion 2.2.3 of the Background section of this thesis. In these instances the examiner has

to rely on the static and Dynamic Binary Instrumentation (DBI) analysis techniques

outlined in step four of the DBIMAFIA methodology.

53

www.manaraa.com

3.7 Summary

In summary, the DBIMAFIA methodology covers device setup, the initial analysis

of the APK and application files, native library hooking, class analysis, and synthesis

and validation of results.

54

www.manaraa.com

IV. Results and Analysis

4.1 Introduction

The results found by the Dynamic Binary Instrumentation Mobile Android Format

Investigation and Analysis (DBIMAFIA) methodlogy is broken into a common format

case study, and an unknown format case study. The common format case study

section describes a situation where an examiner identifies a known storage format

after initial analysis of the application of interest. The unkown format case study

shows the results from the situation when the format is unkown and DBIMAFIA

executes completely to determine the data types stored in the target file.

4.2 Common format case study

This section applies the DBIMAFIA methodology on the Samsung SmartThings

mobile application that is found to store its data in an SQL Lite database [89].

4.2.1 Device Setup: SmartThings

This case study used a Google Pixel 1 running the Android 9.1.0 operating system,

and the SmartThings Android application version 1.7.38-21. The phone was rooted

using the process outlined in the methodology and was connected to a terminal run-

ning ADB version 28.0.2.

4.2.2 Initial Analysis: SmartThings

Initial Analysis Step One: Logical copy of App files and APK

Before executing the application, the examiner logically copied the unmodified

55

www.manaraa.com

version of the SmartThingsV 1-7-38-21.apk and application related files over An-

droid Debug Bridge (ADB).

Initial Analysis Step Two: Application Interaction

The application required the physical SmartThings hub to be connected to the

internet and power before interaction could occur. Additionally, a multipurpose mag-

net sensor was attached to a door, and a Motion sensor was placed in an empty room.

The examiners opened the application, connected the two sensors to the SmartThings

application, and connected everything to WiFi. We verified that the devices were

properly connected, and Modification Detective was run. The examiners interact

with the physical sensors and modification Detective is stopped. This is repeated ten

times to ensure consistent results. The only file that was consistently pulled back was

the CloudDb.db file in the databases directory of the SmartThings application.

Initial Analysis Step Three: File Analysis

The linux file command returned the file type: SQLite 3.x database. The ex-

aminer then opened CloudDb.db with Sqllite, a common Structured Query Language

(SQL) database viewer. Table 2 outlines the tables found inside the CloudDb.db

database.

56

www.manaraa.com

Table 2: SmartThings CloudDB.db Tables.

Table Name Description

activity Contains event log of every sensor input

android metadata Contains location and language data.

cloud settings Key value pairs of server and mobile device.

continuity session Records connection sessions with server.

devices Information on all connected devices.

groups Groups devices based on location.

locations Table of all user defined locations.

plugin Table of all device ids in order of connection.

robotcleaners Holds current state of robot cleaner and location.

scenes User configured logic based on sensor input.

scenes action value type History of actions taken by scene logic.

Modification Detective, a script found in Section 1.1 of the Appendix, revealed that

when the smart sensors transmitted data, that they were written to the CloudDb.db

file in the databases directory of the SmartThings application.

The activity log, found in Table 3, records the activity of every sensor connected

to the SmartThings hub. Table 3 is an abbreviated version of the activity log table

in the CloudDb.db file. The epoch column is a format that records the date and time

that an event occurred. The CloudDb file also contained a device table that recorded

the device id, location, state of sensor and epoch field of all IoT activity. Examiners

found that the motion sensor collected and recorded motion sensor and temperature

data.

57

www.manaraa.com

Table 3: Abbreviated CloudDb.db activity log.

epoch text uiTimestamp

155803879500 contact of MP Sensor is: Open 1558038876206

155803879400 acceleration of MP Sensor is: Vibration detected 1558038876206

155803879300 motion of Motion Sensor is: Motion detected 1558038876206

155803879200 contact of MP Sensor is: Closed 1558038876206

155803879100 temperature of Motion Sensor is: 80°F 1558038876206

The examiners did not need to unpack or analyze the SmartThingsV 1-7-38.apk,

because the data of interest was found in plaintext, the DBIMAFIA methodology

indicates the examiner should skip to Step 5: Synthesis to summarize findings.

4.2.3 Synthesis: SmartThings

The SmartThings application was found to use the SQL Lite format to store its

user data. Validation with the debugger was not required as both the file command,

and the file extension noted the same file type.

4.2.4 Summary of Known Format Case Study

SmartThings was not alone in storing its application data in a known, unencrypted

data format. Examiners applied the DBIMAFIA methodology to fifteen applications,

fourteen of which used XML or SQL Lite formats to store their data. The outlier,

Hago Games is discussed in detail in Section 4.3 of this chapter.

58

www.manaraa.com

Table 4: Storage Formats of Analyzed Applications.

Application Name Version Description Storage Format

1 August SmartLock 9.5.3 Lock SQL Lite

2 SmartThings 1.7.38-21 IoT Hub SQL Lite

3 Garmin Connect 4.22 Smart Watch SQL Lite

4 Harmony 5.4.1 IoT Hub SQL Lite

5 Wink 6.9.62.23006 IoT Hub SQL Lite

6 Tile 2.51.0 Bluetooth Tracker SQL Lite

7 Yale Connect 1.1.1 Lock SQL Lite

8 Whats App 2.19.360 Messenger SQL Lite

9 Instagram 123.0.0 Social Media SQL Lite

10 Ludo King 4.8.0 Game XML

11 Viber 11.7.05 Messenger SQL Lite

12 Tinder 11.6.0 Dating SQL Lite

13 TextNow 6.36.1 Messenger SQL Lite

14 WPSOffice 12.0.1 Document Manager XML

15 Hago Games 3.2.8 Game / Messenger ObjectBox DB

The applications outlined in Table 4 further divide into two categories: IoT and

non-IoT applications. The first 7 applications fall under the IoT category and were

found to store information about physical sensors. This included data about an indi-

vidual’s GPS location, physical health, and security practices. The next 6 applications

contained data about a user’s messaging activity, photos, GPS location, and browser

history.

As the SmartThings case study demonstrated in Table 3, users may not always

know or understand all the data collected by their applications or Internet of Things

59

www.manaraa.com

(IoT) devices. A motion sensor is not expected to collect temperature data. This

may seem insignificant, but in the case of a classified environment, temperature data

could indicate what is being stored in a building or room. The ability to determine

the format of data stored by an application is vital to the security expert’s ability to

properly classify applications and devices.

4.3 Unknown format use cases

This section shows the results from applying DBIMAFIA to the Hago Games

application [90] to determine how the application stores user data. This popular

application has over 200 million downloads from the Google Play Store and supports

voice and text-based communication with other players.

4.3.1 Device Setup: Hago Games

This case study used a Google Pixel 1 running the Android 9.1.0 operating system,

and the Hago Games application version 3.2.8. Examiners rooted the device using

the process outlined in Step One of methodology, and connectred it to a terminal

running ADB version 28.0.2. We then installed Frida version 12.6.11 on the device.

4.3.2 Initial Analysis: Hago Games

Initial Analysis Step One: Logical copy of App files and APK

Before the application executes, an unmodified version of the Android application

package (APK) and application related files were logically copied using the ADB pull

command.

Initial Analysis Step Two: Application Interaction

After making a logical copy of the application and all of its files, Modification

Detective was run. With the script running, we opened the Hago games application

60

www.manaraa.com

and sent messages to other players and Modification Detective pulled back modified

files. We repeated this process 10 times to ensure consistency and to identify the

file saving the application’s message data. Upon visual inspection of the pulled files,

examiners found the data.mdb file that stored Hago Games’ user data.

Initial Analysis Step Three: File Analysis

We used ADB to pull another copy of the application’s file directory. Running a

diff between the original \files\db 12885822986 directory and the same directory

after interaction, identified that the data.mdb file in the \files\db 12885822986

directory was created after application login.

The .mdb extension indicates the file is a Microsoft database file [91], but initial

attempts to open the file with Microsoft Access [92] resulted in an unrecognized

database format error.

Figure 23: Entropy graph of data.mdb.

Running the Linux file command on the data.mdb file returned “data”, indicat-

ing its format is not of a known file type. The Linux binwalk -E entropy command

displayed the graph shown in Figure 23. Encrypted files typically have fairly consis-

61

www.manaraa.com

tent entropy throughout; the constant change in entropy, indicated \files\db 12885822986

\data.mdb was not encrypted.

Figure 24: Strings in \files\db 12885822986\data.mdb.

As Figure 24 illustrates, the Linux strings command returned a series of deci-

pherable American Standard Code for Information Interchange (ASCII) strings.

62

www.manaraa.com

Figure 25: Hex representation of data.mdb.

We then opened \files\db 12885822986\data.mdb in HXD, a hex editor [93].

The examiners found the same strings output outlined in red in Figure 24, inside the

\files\db 12885822986\data.mdb file in Figure 25.

Initial Analysis Step Four: Unpack and Decompile APK

The examiners opened the HagoGamesV 3-2-8.APK in JEB, and the application

was unpacked and disassembled, exposing the Smali code of the application. The ex-

aminer now had direct access to the manifest.xml file, libraries, and the application

resource files.

63

www.manaraa.com

Initial Analysis Step Five: Identify Imported Libraries and Architec-

ture

We analyzed the first line of the application’s manifest.xml file to determine that

Hago Games was using Android’s software development kit version 28. We then in-

spected the application’s imported libraries and found the libobjectbox-jni shared

library file, a database library for mobile and IoT devices. Additionally, we found

that the Hago application was using the ARM64v8 architecture. With a possible lead

on a target file and related shared library, research now shifted to finding the code re-

sponsible for formatting the data written to the \files\db 12885822986\data.mdb

file.

4.3.3 Native Method Hooking: Hago Games

Examiners next hook the libc.so open() and write() methods interacting with

the \files\db 12885822986\data.mdb file. This step gave the examiner insight on

where to begin class analysis.

Native Method Hooking Step One: Hook Open Methods and Obtain

File Descriptor

We cleared the Hago Games data and cache prior to hooking the libc.so open()

to force the application to re-open the \files\db 12885822986\data.mdb file. Next,

we executed monkey -p com.yy.hiyo -c android.intent.category.LAUNCHER 1

to launch the Hago Games default activity via the ADB interface. The Frida com-

mand in Figure 20 uses the frida-Java-playground environment to run user defined

Javascript hooks on an application.

The code in Figure 15 reads the file path into the value variable and compares it

with the predefined target filename (/data/user/0/ com.yy.hiyo/files/db 12885822986/)

to determine if it should be saved in the file descriptor array.

64

www.manaraa.com

Native Method Hooking Step Two: Hook Write Methods, Dump Stack

and Capture Saved Data

Once the examiner has the file descriptor associated with \files\db 12885822986

\data.mdb, the libc.so write() hook can be used to dump the stack.

[Google Pixel::com.yy.hiyo]->
Dump: /data/data/com.yy.hiyo/files/db_12885822986/data.mdb
>>> walkStack
[Top of Stack (Most Recently Called)]

Visiting method ’long
io.objectbox.BoxStore.nativeCreate(Java.lang.String, long, int,
byte[])’ at dex PC 0xffffffff (native PC 0x0)

upcall
Visiting method ’void

io.objectbox.BoxStore.<init>(io.objectbox.b)’ at dex PC 0x0066
Visiting method ’io.objectbox.BoxStore io.objectbox.b.a()’ at dex

PC 0x001b
Visiting method ’void com.yy.appbase.d.b.a(long)’ at dex PC 0x003b
Visiting method ’void com.yy.appbase.d.b.e()’ at dex PC 0x000f
Visiting method ’void com.yy.appbase.d.b.loginIn()’ at dex PC

0x0000
[Bottom of Stack]
<<< walkstack

Figure 26: Methods on the stack 1.

The examiner then logged into the Hago Games application, triggering a write

to \files\db 12885822986\data.mdb, and the call stack in Figure 26 printed to the

console. As Figure 26 indicates that io.objectbox.BoxStore.nativeCreate() is

the last method called before the data is written to \files\db 12885822986\data.mdb.

The contents of arguments passed into io.objectbox.BoxStore.nativeCreate()

were printed to the console. The first argument is the directory that stores the

data.mdb file that is written to. Upon visual inspection, argument four appears to

be an array of integers ranging from -128 to 127, that stores the data written to

\files\db 12885822986\data.mdb.

1Note that frame information was removed for formatting purposes.

65

www.manaraa.com

[Google Pixel::com.yy.hiyo]->

Method: io.objectbox.BoxStore.nativeCreate(Java.lang.String, long,

int, byte[])

Arg1: /data/data/com.yy.hiyo/files/db_12885822986

Arg2: 1048576

Arg3: 0g

Arg4: [28,0,0,0,0,0,0,0,20,0,80,0,72,0,76,0,60,0,56,0,36,0,20,0,0,0,4,

0,20,0,0,,0,0,0,0,0,0,0,0,0,34,0,0,0,0,0,0,0,110,-119,-57,79 ...]

Figure 27: Debugging Stack Visitor2.

Native Method Hooking Step Three: Analysis of Written Bytes

Examiners used the unicode converter found on branah.com [87] to convert the

decimal array in argument 4 to unicode. Figure 28 shows that the bean names

and variables found in \files\db 12885822986\data.mdb were also found in the

byte array passed into io.objectbox.BoxStore.nativeCreate(). However, like the

data.mdb file, all of the data in between the outlined strings is undecipherable. The

non-ASCII characters indicate that this byte array contains non-unicode characters.

We now had a basic level understanding of the bytes written to the file and their

possible relation to the data inside \files\db 12885822986\data.mdb.

2The byte array in argument 4 was too long that it was not practical to include all the data in
this document.

66

www.manaraa.com

Figure 28: Unicode form of written bytes.

4.3.4 Class Analysis: Hago Games

In DBIMAFIA, step four, the examiner statically and dynamically analyzes meth-

ods involved with the formatting of the byte array written to \files \db 12885822986

\data.mdb. In an ideal scenario, our original list of method calls would include every

call involved with the formatting of the data. This was not the case for Hago Games.

As this section discusses, there was a constant need to go back and forth between

static analysis and Frida to track down the methods writing to the byte array.

We began static analysis with the native call made to io.objectbox.BoxStore.

nativeCreate() that was executed from the constructor of io.objectbox.BoxStore.

The byte array written to the database was saved inside the io.objectbox.b.a at-

tribute.

After associating the byte array in argument four of Figure 27 with io.objectbox.b,

we began dynamically analyzing the class and its attributes. Frida hooks on every

67

www.manaraa.com

method of the class allowed examiners to dump the arguments passed into and re-

turned from each method of the io.objectbox.b class. This combined with static

analysis of the class, resulted in tables6 and 5 that explain the attributes and methods

of the io.objectbox.b class.

Table 6: Methods of io.objectbox.b BoxStore class.

BoxStore Class

Method Return Type Description

<init>(io.boxstore.b) void Runs BoxStoreBuilder

a(File) String Checks and returns file path

a(Class) String Return DB name

a(Transaction, int[]) void Commit transactions

b(Class) int Return entity type Id

b(int) String Start Objectbox Browser

close() void Close boxstore

d(Class) Box Returns a box of given class

...

Table 5: Attributes of io.objectbox.b BoxStore class.
Attribute Type Description

a byte[] model
b file directory
c long max size in KB
d int debug Flags
e bool debug Relations
f int max # readers
g int query attempts
h TXCallback helps sync data across devices
i list list of beans
j file directory
k string name
l bool

m
factory

<inputStream>
input stream

68

www.manaraa.com

Figure 29: com.yy.appbase.data.e.a() method.

Examiners used Frida to hook io.objectbox.b.a() and print each individual

bean object passed into it as an argument. This gave examiners a full list of every

bean contained inside the greater io.objectbox.b object. A string search of the

APK’s code found references to the same list of beans in com.yy.appbase.data.e.

Figure 29, line 21 shows the io.objectbox.b class being created. Lines 22 through

50 of Figure 29 reference 29 separate bean model classes to define the properties and

instantiate each bean.

69

www.manaraa.com

Figure 30: com.yy.appbase.data.UserInfoBean objectBox.model class.

Figure 30 contains the UserInfoBean model class, one of the 29 bean model classes

identified by static analysis of com.yy.appbase.data.e. Notice the same strings were

found in the \files\db 12885822986\data.mdb in Figure 25, and the byte array in

Figure 28.

70

www.manaraa.com

Figure 31: com.yy.appbase.data.e.b() method.

We inspected the com.yy.appbase.data.e.b() method in Figure 31, and found

that line 58 creates an io.objectbox.d object and then each of the 29 individual

beans are added to the object in lines 62 through 502. Line 330 creates the new

userInfoBean entity within the io.objectbox.d object. Lines 331 through 361 define

its properties, and line 362 makes a call to the io.object- box.d.b() method to

finalize the UserInfoBean. Examiners now used Frida hooks to print the arguments

and return values of every method of io.objectbox.d to determine the purpose of

71

www.manaraa.com

each method and attribute. Table 8 and Table 7 summarize these findings.

Table 7: Attributes of io.objectbox.d.

Attribute Type Description

a FlatBufferBuilder FlatBufferBuilder

b List<Integer> entity offsets

c long version #

d int last entity ID

e long last entity UID

f int last index ID

g long last index UID

h int last relation ID

i long last relation UID

Table 8: Methods of io.objectbox.d.

io.objectbox.d Class

Method Return Type Description

<init>(io.objectbox.d) void

a(int, long) io.objectbox.d.a builds id property

a(list<int>) int
creates an array of offsets and

serializes as flatbuffer (integer)

a(int) io.objectbox.d.a builds flags

b() io.objectbox.d finalizes entity

b(int, long) io.objectbox.d.a builds index id property

c() void checks if more properties to add

. . .

We hooked the io.objectbox.d.a() method to trace the call stack, and variable

values throughout the method. Line 503 of Figure 31 calls the io.objectbox.d.a()

method found in Figure 32. Figure 32, line 242 and 243 grab the name and object

offsets for each bean and lines 244 and 247 add the offsets to the Google Flat Buffer

Builder. Finally, on line 258, the flat buffer builder (fbb) is returned as a byte array

into the a attribute of io.objectbox.b.

72

www.manaraa.com

Figure 32: io.objectbox.d.a() method.

We used Frida to print the stack’s contents right before the byte array was returned

on line 258 of Figure 32. Figure 33 is a call graph representation Frida’s output.

Figure 33: Call trace of byte array manipulations.

73

www.manaraa.com

4.3.5 Synthesis: Hago Games

Figure 34: Hago Games Data Serialization Process

The creation of the \files\db 12885822986\data.mdb is shown in Figure 34.

This process is further explained in three main steps:

1. com.yy.appbase.data.e.b()

(a) Creates model creator (io.objectbox.d).

(b) Adds beans and their attributes to the model creator.

(c) Serializes beans as fbb.

(d) Returns fbb.

2. io.objectbox.b.<init>

(a) Calls com.yy.appbase.data.e.a() to add bean.

(b) Saves beans serialized as fbb byte array into the a attribute of the BoxStore

Creator (io.objectbox.b).

3. io.objectbox.BoxStore

74

www.manaraa.com

(a) Passes fbb as byte array to io.objectbox.BoxStore.nativeCreate() to

create \files\db 12885822986\data.mdb.

The format of the byte array is modeled in Table 9. The beans and their attributes

are all stored inside the array passed into io.objectbox.BoxStore.nativeCreate().

The io.objectbox.BoxStore class itself is representative of \files\db 12885822986

\data.mdb.

These findings on how Hago Games uses ObjectBox library to store data in custom

file formats can be applied more broadly to any device or application using the Ob-

jectBox library. ObjectBox advertises itself as an edge database for IoT and mobile

applications. Since its release in 2016 ObjectBox has steadily grown in popularity.

The Objectbox library is not just popular in mobile applications, the library is used

in railway systems and continues to be used in various IoT and SCADA systems [94].

The Hago Games stored message history, location information, and personal data

on users. Our research found that any conversation with another Hago user resulted

in a userInfoBean being stored for that user. The userInfoBean was created im-

mediately after a message was sent and did not require the user to reply. This

userInfoBean contained location and birthday information that is not visually dis-

played in the application. This meant that examiners could send any user a message

and expose their full birthday and city. Users are unknowingly exposing their birth

dates and cities by using the Hago Games application. Examiners’ use of DBIMAFIA

gave them the ability to understand how Hago Games stored user data, which led to

the discovery of unnecessary personally identifiable information (PII) leakage.

4.3.6 Validation

We used Android Studio and the smalidea plugin [48] to bytecode debug the appli-

cation and validate our findings. We traced the byte array through the io.objectbox.

75

www.manaraa.com

T
ab

le
9:

F
or

m
at

of
B

y
te

A
rr

ay
.

M
y
O
b
je
c
tB

o
x

F
o
r
m

a
t

B
ea

n
N

a
m

e
G

lo
b

a
lP

er
It

em
B

ea
n

R
ec

o
m

m
en

d
G

a
m

eB
a
n

n
er

D
b

B
lo

ck
D

b
G

a
m

eR
es

u
lt

D
B

B
ea

n
Im

S
es

si
o
n

D
B

B
ea

n
G

a
m

eS
a
v
eD

a
ta

D
B

B
ea

n

A
tt

ri
b

u
te

s

lo
n

g
id

S
tr

in
g

A
c

S
tr

in
g

ti
m

e

..
.

In
t

d
is

p
la

y
T

im
es

S
tr

in
g

g
a
m

eI
d

S
tr

in
g

v
id

eo
U

rl

..
.

lo
n

g
id

lo
n

g
ti

m
es

ta
m

p

lo
n

g
u

id

S
tr

in
g

lo
se

rs

S
tr

in
g

u
se

rs

S
tr

in
g

w
in

n
er

s

..
.

In
t

b
in

d
T

y
p

e

in
t

ch
a
tT

y
p

e

S
tr

in
g

co
n
te

n
tT

y
p

e

..
.

S
tr

in
g

co
n
te

x
t

lo
n

g
id

S
tr

in
g

k
ey

..
.

B
ea

n
N

a
m

e
B

o
x
T

es
tI

n
fo

D
B

B
ea

n
G

a
m

eP
la

y
In

fo
D

B
B

ea
n

R
ec

o
m

m
en

d
G

a
m

eC
o
v
er

D
b

M
sg

S
ec

ti
o
n

B
ea

n
C

h
a
tS

es
si

o
n

D
B

B
ea

n
R

ec
en

tM
a
tc

h
P

eo
p

le
D

B
B

ea
n

A
tt

ri
b

u
te

s

S
tr

in
g

a
v
a
ta

r

S
tr

in
g

b
ir

th
d

a
y

S
tr

in
g

ci
ty

..
.

lo
n

g
en

d
T

s

S
tr

in
g

g
a
m

eI
d

in
t

g
a
m

eM
o
d

e

..
.

S
tr

in
g

g
a
m

eI
d

lo
n

g
id

S
tr

in
g

im
g
U

rl

..
.

S
tr

in
g

co
lo

r

S
tr

in
g

co
n
te

n
t

S
tr

in
g

ex
t

..
.

S
tr

in
g

la
st

m
sg

S
tr

in
g

se
ss

io
n

ID

In
t

se
ss

io
n

T
y
p

e

..
.

S
tr

in
g

a
v
a
ta

r

S
tr

in
g

g
a
m

eI
co

n

S
tr

in
g

g
a
m

eI
d

..
.

B
ea

n
N

a
m

e
Im

M
es

sa
g
eD

B
B

ea
n

W
eM

ee
tM

a
tc

h
es

D
B

B
ea

n
R

ec
h

a
rg

eD
b

B
ea

n
B

a
se

Im
M

sg
B

ea
n

U
se

rI
n

fo
B

ea
n

G
a
m

eP
la

y
R

ec
o
rd

B
ea

n

A
tt

ri
b

u
te

s

tr
a
n

si
en

t
B

o
x
S

to
re

in
t

b
in

d
T

y
p

e

in
t

ch
a
tT

y
p

e

..
.

S
tr

in
g

a
v
a
ta

r

lo
n

g
id

b
o
o
l

is
O

n
li
n

e

..
.

In
t

ch
a
rg

eC
o
n

fi
g
Id

lo
n

g
d

ia
m

o
n

d

S
tr

in
g

g
a
m

eI
d

..
.

S
tr

in
g

a
v
a
ta

r

S
tr

in
g

ci
d

S
tr

in
g

cn
a
m

e

..
.

S
tr

in
g

a
v
a
ta

r

S
tr

in
g

b
ir

th
d

a
y

S
tr

in
g

ci
ty

..
.

S
tr

in
g

g
a
m

eI
d

in
t

g
a
m

eM
o
d

e

lo
n

g
g
a
m

in
g
T

s

..
.

B
ea

n
N

a
m

e
L

ik
eD

b
G

ro
u

p
M

sg
sB

ea
n

F
a
ce

D
b

B
ea

n
F

ri
en

d
L

is
tD

B
B

ea
n

B
a
se

C
Im

M
sg

B
ea

n
C

M
sg

S
ec

ti
o
n

B
ea

n

A
tt

ri
b

u
te

s
lo

n
g

id

lo
n

g
u

id

tr
a
n

si
en

t
B

o
x
S

to
re

S
tr

in
g

g
ro

u
p

Id

lo
n

g
id

..
.

b
o
o
l

a
v
a
il
a
b

le

b
o
o
l

co
ld

S
tr

in
g

fa
ce

Id

..
.

S
tr

in
g

ex
te

n
d

S
tr

in
g

ex
te

n
d

M
a
p

S
tr

in
g

ex
te

n
d

T
w

o

..
.

tr
a
n

si
en

t
B

o
x
S

to
re

S
tr

in
g

a
v
a
ta

r

S
tr

in
g

ci
d

..
.

S
tr

in
g

co
lo

r

S
tr

in
g

co
n
te

n
t

S
tr

in
g

ex
t

..
.

B
ea

n
N

a
m

e
M

u
si

cP
la

y
li
st

D
B

B
ea

n
O

u
tO

fL
in

eB
ea

n
G

a
m

eI
C

o
n

N
o
ti

fy
D

B
B

ea
n

V
o
ic

eR
o
o
m

H
is

to
ry

D
b

B
ea

n
C

h
a
n

n
el

M
sg

sB
ea

n

A
tt

ri
b

u
te

s

lo
n

g
a
d

d
T

im
es

ta
m

p
s

lo
n

g
id

b
o
o
l

is
F

il
eE

x
is

t

..
.

lo
n

g
id

in
t

in
v
a
li
d

T
y
p

e

b
o
o
l

is
N

ev
er

S
h

o
w

..
.

S
tr

in
g

co
n
te

n
t

lo
n

g
en

d
T

s

S
tr

in
g

g
a
m

eI
d

..
.

lo
n

g
ti

m
eS

ta
m

p

S
tr

in
g

ro
o
m

Id

lo
n

g
id

..
.

tr
a
n

si
en

t
B

o
x
S

to
re

S
tr

in
g

g
ro

u
p

Id

lo
n

g
id

..
.

76

www.manaraa.com

BoxStore, io.objectbox.b, com.yy.appbase.data.e, and io.objectbox.d classes.

We set break points on all of these classes to validate the purpose of their methods

and attributes. We stepped through the calls to various io.objectbox.d method

calls inside the com.yy.appbase.data.e.b() method and watched the fbb of each

bean being created. Finally, we traced the byte array from the io.objectbox.d.a()

method to the io.objectbox.BoxStore class and viewed the contents of both the

fbb byte array passed into the nativeCreate() method and the io.objectbox.b

object holding the traits of all the beans and their offsets. The examiners found that

the debugger’s findings validated DBIMAFIA’s results.

4.4 Summary

In summary, the application of the DBIMAFIA methodology was applied to the

15 Android applications found in Table 4. In Section 4.2, we found that 14 of our

15 applications used common formats to store user data. These applications stored

user’s GPS locations, messaging information, and private data.

In Section 4.3, we discovered that Hago Games used the ObjectBox shared library

to format and save data. The ObjectBox library used fbbs, and Java beans to serialize

the user data into \files\db 12885822986\data.mdb. Upon inspection of the data

stored by the Hago Games app, it was discovered that user’s birthdays and cities

were being unnecessarily exposed to other users. Furthermore, these findings on how

Hago Games uses ObjectBox library to store data in custom file formats can be

applied more broadly to any mobile, IoT, or SCADA device or application using the

ObjectBox library.

77

www.manaraa.com

V. Conclusions

This thesis demonstrates that dynamic instrumentation tools combined with static

analysis tools can effectively determine the format of data stored by Android appli-

cations.

This paper presented a new approach to reverse engineering unknown file formats

of Android Applications. Dynamic Binary Instrumentation Mobile Android Format

Investigation and Analysis (DBIMAFIA) combines static analysis with the use of dy-

namic instrumentation tools to provide reverse engineers with a new way to approach

format analysis of Android application data. Mobile application developers commonly

obfuscate applications and add code to intentionally stop reverse engineers from de-

bugging their code. Use of dynamic instrumentation tools, like Frida, avoids the need

to modify the application’s code or properly decompile an application’s code. The

result is a process that circumvents the common anti-debug techniques implemented

by the developers.

With Samsung SmartThings and the thirteen other applications outlined in Ta-

ble 4, DBIMAFIA successfully Identified the format of data stored. Examiners found

that these applications used common formats to store their data and applied DBI-

MAFIA to quickly identify the location and format of relevent data. Examiners

discovered that applications one through fourteen in table 4 stored user’s GPS loca-

tions, messaging information, and physical security practices in SQL Lite or XML

formats.

With Hago Games, DBIMAFIA successfully identified the format of user data

stored. This application required the use of the Dynamic Binary Instrumentation

(DBI) tool, Frida, to trace the written byte array through its manipulations. Frida

hooks of Java methods were used to print the contents of the byte array and associated

objects to reveal the purpose of related classes, methods, and attributes. Examiners

78

www.manaraa.com

combined the use of Frida with static analysis to determine the objectBox format of

the Hago Games application. Examiners used their understanding of the objectBox

format to discover that full names, birthdays, and cities were being unnecessarily

exposed to other users.

5.1 Impact

The variety of Internet of Things (IoT) devices, mobile devices, and firmware

versions, provide a challenge for security experts. The security approach of today’s

desktop computers may not be practical as the cyber battle space continues to evolve.

Discovering ways to dynamically analyze mobile and IoT data is one of many steps

that must be taken as the Department of Defense (DoD) becomes more reliant on

a wider variety of electronic devices. This research explored how dynamic instru-

mentation tools can be used to aid an examiner analyzing mobile application data.

The DBIMAFIA methodology can be applied to aid forensic investigations, and the

classification of mobile devices. More directly, Hago users can be made aware of the

leakage of their birth dates and locations to other users. Furthermore, these findings

on how Hago Games uses ObjectBox library to store data in custom file formats can

be applied more broadly to any mobile, IoT, or SCADA device or application using

the ObjectBox library.

5.2 Future Work

The DoD recognizes that large collections of unclassified information poses a threat

to the United States. IoT and mobile device data is no different. Small amounts of

IoT and mobile data exposure might seem like a limited threat to the DoD, but

aggregated pools of mobile and IoT data could pose a threat to the security of this

nation. Research into what conclusions can be made from large scale analysis of

79

www.manaraa.com

aggregated IoT data would be invaluable to security experts.

The DBIMAFIA methodology successfully identified the format of user data on

an application that stored data in an unkown format. Applying the DBIMAFIA

methodology to determine the format of an application that encrypts its user data

would be an interesting case study.

This research found offsets within the code of the Hago games application. Future

research into using these offsets to design a parser for objectbox data files would be

of great value to investigators who want to quickly access the user data inside of any

mobile application or IoT or SCADA device using the ObjectBox library to save data.

80

www.manaraa.com

Appendix A. Appendix

1.1 Modification Detective Source Code

import sys, subprocess, time

Creates a new file that is later used as a timestamp to find files changed since this file was

created

output_path = ""

bashCommand = "adb shell \"su -c touch /sdcard/new_file" + "\""

print(’\t[+] ’ + bashCommand)

output_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

Delay for user to run application as desired

delay= 15;

for x in range(delay):

print("Progress {:2.1%}".format(x / delay), end="\r")

time.sleep(1)

Hardcoded path to applications data/data folder

folder = "/data/data/com.amazon.dee.app*"

compiles a list of all files changed in th eapplications data foldersince the creation of new_file

(~ 30 seconds earlier)

bashCommand = "adb shell \"su -c find " + folder + " -type f -newer /sdcard/new_file >

/sdcard/list_files.txt" + "\""

print(’\t[+] ’ + bashCommand)

output_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

time.sleep(1)

Pulls a list of files that have been changed back to host

bashCommand = "adb pull /sdcard/list_files.txt"

print(’\t[+] ’ + bashCommand)

output_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

81

www.manaraa.com

Creates a temporary directory for changed files

bashCommand = "adb shell \"su -c mkdir /sdcard/temp" + "\""

print(’\t[+] ’ + bashCommand)

output_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

Reads in the filenames line by line into a string

fileName ="list_files.txt"

with open(fileName) as f:

files = f.readlines()

files = [line.rstrip(’\n’) for line in open(fileName)]

MAkes of copy of each changed file in the temp directory created earlier

for name in files:

bashCommand = "adb shell \"su -c cp " + name + " /sdcard/temp" + "\""

print(’\t[+] ’ + bashCommand)

utput_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

time.sleep(1)

Pulls the folder of edited files back to host

bashCommand = "adb pull /sdcard/temp"

print(’\t[+] ’ + bashCommand)

utput_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

time.sleep(1)

Cleans up and removes all created folders and files

bashCommand = "adb shell \"su -c rm -r /sdcard/temp" + "\""

print(’\t[+] ’ + bashCommand)

output_byte = subprocess.check_output([’bash’,’-c’, bashCommand])

print("\t" + str(output_byte, ’utf-8’))

82

www.manaraa.com

Bibliography

1. Google Developers, “Android Application Fundamentals,” 2019. [Online].

Available: https://developer.android.com/guide/components/fundamentals

2. A. Nazar, M. Seeger, and H. Baier, “Rooting Android – Extending the

ADB by an Auto-Connecting WiFi-Accessible Service,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 7161, no. October 2011, pp. 1–3,

2011. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-

s2.0-84862142324&partnerID=tZOtx3y1

3. D. Barry and T. Stanienda, “Solving the Java object storage problem,” Computer,

vol. 31, no. 11, pp. 33–40, 1998.

4. M. Altarade, “The definitive guide to NoSql,” 2016. [Online]. Available:

https://www.toptal.com/database/the-definitive-guide-to-nosql-databases

5. Frida, “Dynamic Instrumentation Toolkit,” 2019. [Online]. Available: https:

//www.frida.re/

6. TwoSix Labs, “Edge of the Art in Vulnerability Research DARPA CHESS Pro-

gram,” vol. 22203, no. December, 2019.

7. D. Sazonov, “Andriller - Android Forensic Tools,” Git Hub, 2019. [Online].

Available: https://github.com/den4uk

8. D. Trump, “Executive Order on Securing the Information and Com-

munications Technology and Services Supply Chain,” 2019. [Online].

Available: https://www.whitehouse.gov/presidential-actions/executive-order-

securing-information-communications-technology-services-supply-chain/

83

https://developer.android.com/guide/components/fundamentals
http://www.scopus.com/inward/record.url?eid=2-s2.0-84862142324&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84862142324&partnerID=tZOtx3y1
https://www.toptal.com/database/the-definitive-guide-to-nosql-databases
https://www.frida.re/
https://www.frida.re/
https://github.com/den4uk
https://www.whitehouse.gov/presidential-actions/executive-order-securing-information-communications-technology-services-supply-chain/
https://www.whitehouse.gov/presidential-actions/executive-order-securing-information-communications-technology-services-supply-chain/

www.manaraa.com

9. StatCounter, “Mobile Operating System Market Share Worldwide,” 2019. [On-

line]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide

10. United States Government, “Federal Government Mobile Applications Direc-

tory,” 2019. [Online]. Available: https://www.usa.gov/mobile-apps#focusable

11. J. Marks, “DOD Opts for Android for Classified Tablets,” 2017. [On-

line]. Available: https://www.nextgov.com/it-modernization/2017/08/dod-opts-

android-classified-tablets/140069/

12. G. Seffers, “Maxwell-Gunter Air Force Base serves as the IoT example.”

2018. [Online]. Available: https://www.afcea.org/content/air-force-extends-

smart-base-pilot-program

13. T. Armerding, “The 18 biggest data breaches of the 21st century: Se-

curity practitioners weigh in on the 18 worst data breaches in recent

memory.” Chief Security Office United States, pp. 1–7, 2018. [Online]. Avail-

able: https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-

the-21st-century.html

14. K. DiGrazia, “Cyber Insurance, Data Security, and Blockchain in the Wake of the

Equifax Breach,” Journal of Business and Technology Law, vol. 13, no. 2, pp. 255–

277, 2018. [Online]. Available: http://search.ebscohost.com/login.aspx?direct=

true&db=edshol&AN=edshol.hein.journals.jobtela13.16&lang=de&site=eds-live

15. N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “De-

mystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a

First Empirical Look on Internet-Scale IoT Exploitations,” IEEE Communica-

tions Surveys and Tutorials, vol. 21, no. 3, pp. 2702–2733, 2019.

84

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.usa.gov/mobile-apps#focusable
https://www.nextgov.com/it-modernization/2017/08/dod-opts-android-classified-tablets/140069/
https://www.nextgov.com/it-modernization/2017/08/dod-opts-android-classified-tablets/140069/
https://www.afcea.org/content/air-force-extends-smart-base-pilot-program
https://www.afcea.org/content/air-force-extends-smart-base-pilot-program
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
http://search.ebscohost.com/login.aspx?direct=true&db=edshol&AN=edshol.hein.journals.jobtela13.16&lang=de&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=edshol&AN=edshol.hein.journals.jobtela13.16&lang=de&site=eds-live

www.manaraa.com

16. AT&T Business, “Smart Base Pilot Program: IoT solutions for military

instillations,” 2018. [Online]. Available: https://www.business.att.com/content/

dam/attbusiness/insights/casestudiesandpdfs/CS Maxwell AFB.pdf

17. A. Schiffer, “How a fish tank helped hack a casino,” The Washington Post,

pp. 205–220, 2017. [Online]. Available: https://www.washingtonpost.com/news/

innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/

18. S. Keane, “Huawei ban: Full timeline as House bars US

government from buying Chinese company’s gear,” 2019. [On-

line]. Available: https://www.cnet.com/news/huawei-ban-full-timeline-house-

us-government-china-trump-ban-security-threat-mate-x/

19. K. Rosenblatt, “Army bans TikTok following guidance from the Pentagon,”

2019. [Online]. Available: https://www.nbcnews.com/news/amp/ncna1109001

20. J. Sanders and D. Patterson, “Facebook data privacy scandal: A cheat sheet,”

2019. [Online]. Available: https://www.techrepublic.com/article/facebook-data-

privacy-scandal-a-cheat-sheet/

21. AppBrain, “Hago- Play with new friends: Games Statistics,” 2019. [Online].

Available: https://www.appbrain.com/app/hago-play-with-new-friends/com.yy.

hiyo

22. August Home Inc, “August Home,” Google Play Store, vol. 9.5.3, 2019.

[Online]. Available: https://play.google.com/store/apps/details?id=com.august.

luna&hl=en US

23. L. Samsung Electronics Co., “Samsung SmartThings,” Google Play Store, vol.

1.7.38-21, 2019. [Online]. Available: https://play.google.com/store/apps/details?

id=com.samsung.android.oneconnect&hl=en US

85

https://www.business.att.com/content/dam/attbusiness/insights/casestudiesandpdfs/CS_Maxwell_AFB.pdf
https://www.business.att.com/content/dam/attbusiness/insights/casestudiesandpdfs/CS_Maxwell_AFB.pdf
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/
https://www.cnet.com/news/huawei-ban-full-timeline-house-us-government-china-trump-ban-security-threat-mate-x/
https://www.cnet.com/news/huawei-ban-full-timeline-house-us-government-china-trump-ban-security-threat-mate-x/
https://www.nbcnews.com/news/amp/ncna1109001
https://www.techrepublic.com/article/facebook-data-privacy-scandal-a-cheat-sheet/
https://www.techrepublic.com/article/facebook-data-privacy-scandal-a-cheat-sheet/
https://www.appbrain.com/app/hago-play-with-new-friends/com.yy.hiyo
https://www.appbrain.com/app/hago-play-with-new-friends/com.yy.hiyo
https://play.google.com/store/apps/details?id=com.august.luna&hl=en_US
https://play.google.com/store/apps/details?id=com.august.luna&hl=en_US
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect&hl=en_US
https://play.google.com/store/apps/details?id=com.samsung.android.oneconnect&hl=en_US

www.manaraa.com

24. Garmin, “Garmin Connect,” Google Play Store, vol. 4.22, 2019. [Online].

Available: https://play.google.com/store/apps/details?id=com.garmin.android.

apps.connectmobile&hl=en US

25. WhatsApp Inc., “WhatsApp Messenger,” Google Play Store, vol. 2.19.360,

2019. [Online]. Available: https://play.google.com/store/apps/details?id=com.

whatsapp&hl=en US

26. Instagram, “Instagram,” Google Play Store, vol. 123.0.0, 2019. [Online]. Avail-

able: https://play.google.com/store/apps/details?id=com.instagram.android&

hl=en US

27. Gametion Technologies Pvt Ltd, “Ludo King™,” Google Play Store, vol. 4.8.0,

2019. [Online]. Available: https://play.google.com/store/apps/details?id=com.

ludo.king&hl=en US

28. Viber Media S.à r.l., “Viber Messenger - Messages, Group Chats &

Calls,” Google Play Store, vol. 11.7.05, 2019. [Online]. Available: https:

//play.google.com/store/apps/details?id=com.viber.voip&hl=en US

29. Tinder, “Tinder,” Google Play Store, vol. 11.6.0, 2019. [Online]. Available:

https://play.google.com/store/apps/details?id=com.tinder&hl=en US

30. I. TextNow, “TextNow: Free Texting & Calling App,” Google Play Store, vol.

6.36.1, 2019. [Online]. Available: https://play.google.com/store/apps/details?

id=com.enflick.android.TextNow&hl=en US

31. Kingsoft Office Software Corporation Limited, “WPS Office - Word, Docs, PDF,

Note, Slide & Sheet,” Google Play Store, vol. 12.0.1, 2019. [Online]. Available:

https://play.google.com/store/apps/details?id=cn.wps.moffice eng&hl=en US

86

https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile&hl=en_US
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile&hl=en_US
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en_US
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en_US
https://play.google.com/store/apps/details?id=com.instagram.android&hl=en_US
https://play.google.com/store/apps/details?id=com.instagram.android&hl=en_US
https://play.google.com/store/apps/details?id=com.ludo.king&hl=en_US
https://play.google.com/store/apps/details?id=com.ludo.king&hl=en_US
https://play.google.com/store/apps/details?id=com.viber.voip&hl=en_US
https://play.google.com/store/apps/details?id=com.viber.voip&hl=en_US
https://play.google.com/store/apps/details?id=com.tinder&hl=en_US
https://play.google.com/store/apps/details?id=com.enflick.android.TextNow&hl=en_US
https://play.google.com/store/apps/details?id=com.enflick.android.TextNow&hl=en_US
https://play.google.com/store/apps/details?id=cn.wps.moffice_eng&hl=en_US

www.manaraa.com

32. Logitech Europe S.A., “Harmony,” Google Play Store, vol. 6.2.1, 2019. [On-

line]. Available: https://play.google.com/store/apps/details?id=com.logitech.

harmonyhub&hl=en US

33. Wink App, “Wink - Smart Home,” Google Play Store, vol. 6.9.62.230, 2019.

[Online]. Available: https://play.google.com/store/apps/details?id=com.quirky.

android.wink.wink&hl=en US

34. Tile Inc., “Tile,” Google Play Store, vol. 2.51.0, 2019. [Online]. Available:

https://play.google.com/store/apps/details?id=com.thetileapp.tile&hl=en US

35. ASSA ABLOY Americas International Logistic Co, “Yale Connect,” Google Play

Store, vol. 1.1.1, 2019. [Online]. Available: https://play.google.com/store/apps/

details?id=com.assaabloy.yaleconnect&hl=en US

36. S. Reti, G. D’Angelo, and A. Omicini, “Hooking Java meth-

ods and native functions to enhance Android applications secu-

rity,” 2016. [Online]. Available: https://amslaurea.unibo.it/12257/1/

Brandolini HookingJavaMethodsAndNativeFunctions.pdf

37. Oracle, “What is a Database,” 2018. [Online]. Available: https://www.oracle.

com/database/what-is-database.html

38. ——, “The Java EE 8 tutorial,” 2017. [Online]. Available: https:

//javaee.github.io/tutorial/ejb-intro.html

39. E. Chikofsky and J. Cross, “1990 - RE and Design Recovery,” no. January, pp.

13–17, 1990.

40. R. Dill, “Automating Mobile Device File Format Analysis,” 2018. [Online].

Available: https://apps.dtic.mil/docs/citations/AD1063269

87

https://play.google.com/store/apps/details?id=com.logitech.harmonyhub&hl=en_US
https://play.google.com/store/apps/details?id=com.logitech.harmonyhub&hl=en_US
https://play.google.com/store/apps/details?id=com.quirky.android.wink.wink&hl=en_US
https://play.google.com/store/apps/details?id=com.quirky.android.wink.wink&hl=en_US
https://play.google.com/store/apps/details?id=com.thetileapp.tile&hl=en_US
https://play.google.com/store/apps/details?id=com.assaabloy.yaleconnect&hl=en_US
https://play.google.com/store/apps/details?id=com.assaabloy.yaleconnect&hl=en_US
https://amslaurea.unibo.it/12257/1/Brandolini_HookingJavaMethodsAndNativeFunctions.pdf
https://amslaurea.unibo.it/12257/1/Brandolini_HookingJavaMethodsAndNativeFunctions.pdf
https://www.oracle.com/database/what-is-database.html
https://www.oracle.com/database/what-is-database.html
https://javaee.github.io/tutorial/ejb-intro.html
https://javaee.github.io/tutorial/ejb-intro.html
https://apps.dtic.mil/docs/citations/AD1063269

www.manaraa.com

41. B. A. Wichmann, A. A. Canning, D. L. Clutterbuck, L. A. Winsbarrow,

N. J. Ward, and D. W. R. Marsh, “Industrial Perspective on Static Analysis.”

Software Engineering Journal, no. March, pp. 69–75, 1995. [Online]. Available:

http://www.ida.liu.se/∼TDDC90/papers/industrial95.pdf

42. APKPure LLC, “APKPure Homepage,” 2014. [Online]. Available: https:

//apkpure.com/

43. Illogical Robot LLC, “APK Mirror,” 2014. [Online]. Available: https:

//www.apkmirror.com/faq/

44. KingoApp, “What Role does SU binary play in Android rooting?” p. 1,

2019. [Online]. Available: https://www.kingoapp.com/knowledge-base/what-is-

su-binary.htm

45. J.-L. Gailly, “ZLIB Compressed Data Format Specification version 3.3,” Internet

Engineering Task Force, 1996. [Online]. Available: InternetEngineeringTaskForce

46. I. Pavlov, “7Zip Installation,” 2019. [Online]. Available: https://www.7-zip.org/

47. Skylot, “jadx - Dex to Java decompiler,” 2019. [Online]. Available:

https://github.com/skylot/jadx

48. Jesus Freke, “Samli,” 2019. [Online]. Available: https://github.com/JesusFreke/

smali

49. B. Gruver, “smali Package Description,” 2009. [Online]. Available: https:

//tools.kali.org/reverse-engineering/smali

50. PNF Software, “JEB,” 2019. [Online]. Available: https://www.pnfsoftware.com/

jeb2/manual/debugging/#availability

88

http://www.ida.liu.se/~TDDC90/papers/industrial95.pdf
https://apkpure.com/
https://apkpure.com/
https://www.apkmirror.com/faq/
https://www.apkmirror.com/faq/
https://www.kingoapp.com/knowledge-base/what-is-su-binary.htm
https://www.kingoapp.com/knowledge-base/what-is-su-binary.htm
Internet Engineering Task Force
https://www.7-zip.org/
https://github.com/skylot/jadx
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://tools.kali.org/reverse-engineering/smali
https://tools.kali.org/reverse-engineering/smali
https://www.pnfsoftware.com/jeb2/manual/debugging/#availability
https://www.pnfsoftware.com/jeb2/manual/debugging/#availability

www.manaraa.com

51. Hex-Rays, “Debugging Dalvik programs with IDA,” 2014. [On-

line]. Available: https://www.hex-rays.com/products/ida/support/tutorials/

debugging dalvik.pdf

52. Google, “Android Studio,” 2019. [Online]. Available: https://developer.android.

com/studio/releases/

53. Check Point Software Technologies LTD., “Cuckoo-droid,” 2015. [Online].

Available: https://github.com/idanr1986/cuckoo-droid

54. Joe Security, “Joe Sandbox,” 2019. [Online]. Available: https://www.joesecurity.

org/joe-sandbox-mobile

55. C. Tumbleson, “Apktool v2.2.0 Released,” 2016. [Online]. Available: https:

//connortumbleson.com/2016/08/07/apktool-v2-2-0-released/

56. H. Cho, J. Lim, H. Kim, and J. H. Yi, “Anti-debugging scheme for protecting

mobile apps on android platform,” Journal of Supercomputing, vol. 72, no. 1, pp.

232–246, 2016.

57. Guardsquare, “Protecting Android applications and SDKs against reverse

engineering and hacking with Dexguard,” 2019. [Online]. Available: https:

//www.guardsquare.com/en/products/dexguard

58. Licel Corporation, “What is DexProtector?” 2019. [Online]. Available:

https://dexprotector.com/

59. E. Eilam, Reversing: Secrets of Reverse Engineering. Wiley Publishing Inc.,

2005.

60. Microsoft, “Dumpbin Reference,” 2016. [Online]. Available: https://docs.

microsoft.com/en-us/cpp/build/reference/dumpbin-reference?view=vs-2019

89

https://www.hex-rays.com/products/ida/support/tutorials/debugging_dalvik.pdf
https://www.hex-rays.com/products/ida/support/tutorials/debugging_dalvik.pdf
https://developer.android.com/studio/releases/
https://developer.android.com/studio/releases/
https://github.com/idanr1986/cuckoo-droid
https://www.joesecurity.org/joe-sandbox-mobile
https://www.joesecurity.org/joe-sandbox-mobile
https://connortumbleson.com/2016/08/07/apktool-v2-2-0-released/
https://connortumbleson.com/2016/08/07/apktool-v2-2-0-released/
https://www.guardsquare.com/en/products/dexguard
https://www.guardsquare.com/en/products/dexguard
https://dexprotector.com/
https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-reference?view=vs-2019

www.manaraa.com

61. G. C. Kessler, “Are mobile device examinations practiced like ‘forensics’?” Digital

Evidence and Electronic Signature Law Review, vol. 12, no. 0, 2015.

62. M. Pollitt, “OSAC Technical Series 0002 A Framework for Harmonizing Forensic

Science Practices and Digital / Multimedia Evidence OSAC Technical Series 0002

A Framework for Harmonizing Forensic Science Practices and Digital / Multime-

dia Evidence.”

63. P. Stelfox, Criminal investigation: An introduction to principles and practice.

Willan, 2013.

64. S. Bommisetty, R. Tamma, and H. Mahalik, Practical Mobile Forensics, Birm-

ingham B3 2PB, UK., 2014.

65. M. Hassan and L. Pantaleon, “An investigation into the impact of rooting android

device on user data integrity,” Proceedings - 2017 7th International Conference

on Emerging Security Technologies, EST 2017, pp. 32–37, 2017.

66. E. Casey and B. Schatz, Conducting digital investigations.

67. N. Bergman, J. Rouse, M. Stanfield, J. Scambray, S. Deshmukh, M. Price,

S. Geethakumar, S. Matsumoto, and J. Steven, Hacking Exposed Mobile: Se-

curity Secrets & Solutions. McGraw Hill Professional, 2013.

68. Nation Security Agency, “GHIDRA: A software reverse engineering (SRE)

suite of tools developed by NSA’s Research Directorate in support of the

Cybersecurity mission,” 2019. [Online]. Available: https://ghidra-sre.org/

69. Vector35, “Binary Ninja: A New Type of Reversing Platform,” 2016. [Online].

Available: https://binary.ninja/

90

https://ghidra-sre.org/
https://binary.ninja/

www.manaraa.com

70. utds3 lab, “Multiverse: Static Binary Rewriter,” 2019. [Online]. Available:

https://github.com/utds3lab/multiverse

71. Gramma Tech, “DDISASM: Datalog Disassembly,” 2019. [Online]. Available:

https://github.com/GrammaTech/ddisasm

72. R. O’Callahan, “rr- reverse engineering tool,” Git Hub, 2019. [Online]. Available:

https://github.com/mozilla/rr

73. Mozilla Research, “How rr works,” 2019. [Online]. Available: https://rr-

project.org/

74. Lody, “Legend android,” Git Hub, 2019. [Online]. Available: https:

//github.com/asLody/legend

75. C. Mulliner, “adbi - The Android Dynamic Binary Instrumentation Toolkit,”

Git Hub, 2015. [Online]. Available: https://github.com/crmulliner/adbi

76. R. Spolaor, E. D. Santo, and M. Conti, “DELTA: Data Extraction and Logging

Tool for Android,” IEEE Transactions on Mobile Computing, vol. 17, no. 6, pp.

1289–1302, 2018.

77. H. Falaki, R. Mahajan, and D. Estrin, “SystemSens: A tool for

monitoring usage in smartphone research deployments,” proceedings 6th

international Workshop MobiArch, pp. 25–30, 2011. [Online]. Available:

https://dl.acm.org/doi/abs/10.1145/1999916.1999923

78. J. Grover, “Android forensics: Automated data collection and reporting from

a mobile device,” Proceedings of the Digital Forensic Research Conference,

DFRWS 2013 USA, vol. 10, pp. S12–S20, 2013. [Online]. Available:

http://dx.doi.org/10.1016/j.diin.2013.06.002

91

https://github.com/utds3lab/multiverse
https://github.com/GrammaTech/ddisasm
https://github.com/mozilla/rr
https://rr-project.org/
https://rr-project.org/
https://github.com/asLody/legend
https://github.com/asLody/legend
https://github.com/crmulliner/adbi
https://dl.acm.org/doi/abs/10.1145/1999916.1999923
http://dx.doi.org/10.1016/j.diin.2013.06.002

www.manaraa.com

79. R. Guo, T. Zhu, Y. Wang, and X. Xu, “Mobilesens: A framework of behavior

logger on Android mobile device,” IEEE, no. 6th International conference, pp.

281–286.

80. A. Nandugudi and E. Al., “PhoneLab: A large programmable smartphone

testbed,” Workshop Sensing Big Data Mining, pp. 1–6, 2013.

81. C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “Livelab: Measur-

ing wireless networks and smartphone users in the field,” Special interest group

on performance evaluationS, 2011.

82. D. T. Wagner, A. Rice, and A. R. Beresford, “Device analyzer: Understanding

smartphone usage,” Lecture Notes of the Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering, vol. 131, pp. 195–208, 2014.

83. Magisk, “Root Magisk without TWRP on Android P,” 2018. [Online].

Available: https://forum.xda-developers.com/pixel-2-xl/how-to/guide-magisk-

twrp-android-p-t3826994

84. O. A. Ravn̊as, “Art-internals probe,” 2017. [On-

line]. Available: https://github.com/oleavr/art-internals/blob/

070aebfc5e96c8ff5977875c790c75c87dc6ac55/probe.py#L188

85. N. Jones, “How to Use C’s offsetof() Macro,” 2004. [Online]. Available:

https://barrgroup.com/embedded-systems/how-to/c-offsetof-macro

86. Linux Community, “Linux man pages,” 2019. [Online]. Available: https:

//linux.die.net/man/2/

87. Branah, “Unicode Converter - Decimal, text, URL, and unicode converter,” vol.

1.0, 2019. [Online]. Available: https://www.branah.com/unicode-converter

92

https://forum.xda-developers.com/pixel-2-xl/how-to/guide-magisk-twrp-android-p-t3826994
https://forum.xda-developers.com/pixel-2-xl/how-to/guide-magisk-twrp-android-p-t3826994
https://github.com/oleavr/art-internals/blob/070aebfc5e96c8ff5977875c790c75c87dc6ac55/probe.py#L188
https://github.com/oleavr/art-internals/blob/070aebfc5e96c8ff5977875c790c75c87dc6ac55/probe.py#L188
https://barrgroup.com/embedded-systems/how-to/c-offsetof-macro
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://www.branah.com/unicode-converter

www.manaraa.com

88. RapidTables, “RapidTables Number Conversion,” 2019. [Online]. Available:

https://www.rapidtables.com/convert/number/index.html

89. E. B. Bloomberg, Navigation Data Standard, “What Is SQLite?” 2020. [Online].

Available: https://www.sqlite.org/index.html

90. H. Games, “HAGO - Play with firends,” 2019. [Online]. Available:

https://play.google.com/store/apps/details?id=com.yy.hiyo&hl=en US

91. FileInfo, “Whats is the .mdb file extension and how can I open it?” 2017.

[Online]. Available: https://fileinfo.com/extension/mdb

92. TutorialsPoint, “Microsoft Access - Overview,” 2015. [Online]. Available:

https://www.tutorialspoint.com/ms access/ms access overview.htm

93. Maël Hörz, “HxD - Freeware Hex Editor and Disk Editor,” mh-nexus, vol. 2.3.0,

2019. [Online]. Available: https://mh-nexus.de/en/hxd/

94. Kapsch, “Industrial IoT (IIoT) edge solution for railway operators – a Kapsch

ObjectBox Case Study,” 2018. [Online]. Available: https://objectbox.io/iiot-

edge-solution-railway-industry-kapsch-objectbox-case-study/

93

https://www.rapidtables.com/convert/number/index.html
https://www.sqlite.org/index.html
https://play.google.com/store/apps/details?id=com.yy.hiyo&hl=en_US
https://fileinfo.com/extension/mdb
https://www.tutorialspoint.com/ms_access/ms_access_overview.htm
https://mh-nexus.de/en/hxd/
https://objectbox.io/iiot-edge-solution-railway-industry-kapsch-objectbox-case-study/
https://objectbox.io/iiot-edge-solution-railway-industry-kapsch-objectbox-case-study/

www.manaraa.com

Acronyms

ADB Android Debug Bridge. 20, 38, 56

ADBI Android Dynamic Binary Instrumentation. 33

ADSS Automated Data Structure Slayer. 35

API Application Program Interface. 4, 9, 26

APK Android application package. vii, 6, 9, 19, 20, 21, 24, 37, 38, 39, 40, 41, 53,

54, 60, 69

ART Android Run-Time. 9

ASCII American Standard Code for Information Interchange. 40, 50, 62

DBI Dynamic Binary Instrumentation. 53, 78, 1

DBIMAFIA Dynamic Binary Instrumentation Mobile Android Format Investiga-

tion and Analysis. iv, ix, 4, 6, 7, 35, 37, 38, 40, 42, 50, 51, 53, 54, 55, 58, 60,

67, 77, 78, 79, 80, 1

DoD Department of Defense. 4, 79, 1

fbb flat buffer builder. 72, 74, 75, 77

HAL Hardware Abstraction Layer. 8

IoT Internet of Things. 1, 26, 29, 59, 79

PII personally identifiable information. 75, 1

SQL Structured Query Language. 56

94

www.manaraa.com

US United States. 3

USAF United States Air Force. 2

95

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

Mobile Data Analysis using Dynamic Binary Instrumentation and Static
Analysis

2d Lt Christopher Dukarm

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-016

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Mobile classified data leakage poses a threat to the DoD programs and missions. Security experts must know the format
of application data, in order to properly classify mobile applications. This research presents the DBIMAFIA methodology
to identify stored data formats. DBIMAFIA uses DBI and static analysis to uncover the structure of mobile application
data and validate the results with traditional reverse engineering methods. DBIMAFIA was applied to fifteen popular
Android applications and revealed the format of stored data. Notably, user PII leakage is identified in the Hago Games
application. The application’s messaging service exposes the full name, birthday, and city of any user of the Hago Games
application. These findings on how Hago Games uses ObjectBox library to store data in custom file formats can be
applied more broadly to any mobile, IoT, or SCADA device or application using the ObjectBox library. Furthermore, the
DBIMAFIA methodology can be more broadly defined to identify stored data within any Android application.

Mobile, Reverse Engineering, IoT

U U U UU 108

Maj Richard Dill, AFIT/ENG

(937) 255-3636, ext 3652; richard.dill@afit.edu

	Mobile Data Analysis using Dynamic Binary Instrumentation and Static Analysis
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Objectives
	Methodology
	Summary

	Background and Literature Review
	Android
	Android Architecture
	Android Application Fundamentals
	Android Databases
	Enterprise Beans

	Reverse Engineering Android Applications
	Static Reverse Engineering Android Applications
	Dynamic Reverse Engineering Android Applications
	Anti-Reverse Engineering Techniques
	Deciphering file formats

	Forensics
	Traditional Forensics
	Digital Forensics
	Mobile Forensics
	IoT Forensics

	Related Work
	Disassemblers and Decompilers
	Static Instrumentation Tools
	Dynamic Binary Instrumentation Tools
	Application Analysis
	Data Collection Tools
	Android File Format Analysis
	Related Work Summary

	Summary

	Methodology
	Device Setup
	Initial Analysis
	Initial Analysis Step One: Logical Copy of Application files and APK
	Initial Analysis Step Two: Application Interaction
	Initial Analysis Step Three: File Analysis
	Initial Analysis Step Four: Unpack and Decompile APK
	Initial Analysis Step Five: Identify Imported Libraries and Application Architecture
	Initial Analysis Step Six: Modify Frida for 32-bit Applications

	Native Method Hooking
	Native Method Hooking Step One: Hook Open Methods and Obtain File Descriptor
	Native Method Hooking Step Two: Hook Write, Dump Stack and Written Data
	Native Method Hooking Step Three: Analyze Written Data

	Class Analysis
	Synthesis
	Validation
	Summary

	Results and Analysis
	Introduction
	Common format case study
	Device Setup: SmartThings
	Initial Analysis: SmartThings
	Synthesis: SmartThings
	Summary of Known Format Case Study

	Unknown format use cases
	Device Setup: Hago Games
	Initial Analysis: Hago Games
	Native Method Hooking: Hago Games
	Class Analysis: Hago Games
	Synthesis: Hago Games
	Validation

	Summary

	Conclusions
	Impact
	Future Work

	Appendix
	Modification Detective Source Code

	Bibliography
	Acronyms

